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SUMMARY

We present a conceptual and numerical approach to model processes in the Earth’s interior
that involve multiple phases that simultaneously interact thermally, mechanically and chem-
ically. The approach is truly multiphase in the sense that each dynamic phase is explicitly
modelled with an individual set of mass, momentum, energy and chemical mass balance
equations coupled via interfacial interaction terms. It is also truly multicomponent in the
sense that the compositions of the system and its constituent phases are expressed by a full
set of fundamental chemical components (e.g. SiO,, Al,O3, MgO, etc.) rather than proxies.
These chemical components evolve, react with and partition into different phases accord-
ing to an internally consistent thermodynamic model. We combine concepts from Ensemble
Averaging and Classical Irreversible Thermodynamics to obtain sets of macroscopic balance
equations that describe the evolution of systems governed by multiphase multicomponent reac-
tive transport (MPMCRT). Equilibrium mineral assemblages, their compositions and physical
properties, and closure relations for the balance equations are obtained via a ‘dynamic’ Gibbs
free-energy minimization procedure (i.e. minimizations are performed on-the-fly as needed
by the simulation). Surface tension and surface energy contributions to the dynamics and
energetics of the system are taken into account. We show how complex rheologies, that is,
visco-elasto-plastic, and/or different interfacial models can be incorporated into our MPMCRT
ensemble-averaged formulation. The resulting model provides a reliable platform to study the
dynamics and nonlinear feedbacks of MPMCRT systems of different nature and scales, as well
as to make realistic comparisons with both geophysical and geochemical data sets. Several
numerical examples are presented to illustrate the benefits and limitations of the model.

Key words: Composition of the planets; Numerical modelling; Dynamics of lithosphere and
mantle; Mechanics, theory, and modelling; Magma genesis and partial melting.

1 INTRODUCTION

1.1 General considerations and background

When considering geological processes, multiphase multicomponent reactive transport (MPMCRT), where different chemical species interact
with different phases in complex ways, is the rule rather than the exception. As such, MPMCRT controls a number of important geodynamic
and geochemical phenomena, such as melt generation and migration, rock metasomatism, rheological weakening, magmatic differentiation,
ore emplacement and fractionation of chemical elements, to name a few. Given its fundamental importance, there has always been a strong
motivation and interest for investigating the governing equations of MPMCRT, their mathematical structure and properties, and the numerical
techniques necessary to obtain reliable solutions. However, due to the inherent complexity of MPMCRT, progress towards the understanding
and modelling of such processes within the solid Earth community has been naturally slow and incremental.

The pioneering works were based on relatively simple continuum formulations of two-phase viscous flow with incompressible phases
(e.g. Frank 1968; Sleep 1974). Although these formulations start with a formal consideration of the microscopic conservation equations for
each phase separately, further simplifications in regards to the mixture properties resulted in models that are akin to the so-called mixture
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models in the engineering literature (Ishii 1975; Bowen 1976; Gidaspow 1994; Jakobsen 2014). Thus, the resulting system of equations does
not differ significantly in form from what is used in single phase systems (typically written as a system of either three or four governing
equations), except for the implicit or explicit consideration of interfacial terms (see below). In this case, additional phasic balance equations
need to be postulated to account for the different (relative) dynamics and energetics of the phases, as typically only one set of primitive variables
(e.g. mixture or matrix velocity) is obtained from the balance equations. In this context, the most common assumptions in geodynamics are
to neglect relative temperature differences (i.e. phases are in thermal equilibrium) and to assume that the velocity difference between solid
and melt is given by a Darcy’s-type law (e.g. McKenzie 1984; Fowler 1985; Scott & Stevenson 1986; Spiegelman 1993a,c; Iwamori 1993).
The validity of such assumptions will be discussed later, but we mention here that they strictly imply slow percolation of small amounts of
melt through a viscous, load-bearing deformable matrix. These type of models represent the work-horse of two-phase matrix-melt dynamics
and have been extensively applied to study the behaviour of magma transport within the Earth’s mantle (e.g. McKenzie 1984; Scott &
Stevenson 1986; Spiegelman 1993a,c; Iwamori 1993; Aharonov et al. 1995; Spiegelman et al. 2001; Kelemen et al. 1997; Rabinowicz
& Vigneresse 2004; Elliott & Spiegelman 2003,among many others). Later studies incorporated additional phenomena such as surface
tension and damage (e.g. Bercovici ef al. 2001; Bercovici & Ricard 2003; Takei & Hier-Majumder 2009), the energetics of the system (e.g.
Sramek et al. 2007; Katz 2008; Rudge ef al. 2011; Regenauer-Lieb et al. 2015), complex rheologies (e.g. Katz et al. 2006; Connolly &
Podladchikov 2007; Keller et al. 2013; Peters et al. 2015; Yarushina & Podladchikov 2015), reactive flow (e.g. Mayer et al. 2002; Steefel
et al. 2005; Hesse et al. 2011; Schiemenz et al. 2011; Malvoisin et al. 2015; Keller & Katz 2016) and chemical transport (Spiegelman &
Elliott 1993; Elliott & Spiegelman 2003), although the last two (reactive flow and chemical transport) typically in a simple parametrized way.
These advances add considerable complexity to the numerical modelling of multiphase physics, yet impose additional rigor to the theoretical
modelling of the Earth interior.

An alternative to mixture-type models is the so-called true multiphase flow model or multifluid model (the most popular variant is
the two-phase flow model, cf. Ishii (1975); Jakobsen (2014); Ricard (2015)). In this approach, the final model is formulated by considering
the different phases, and their respective conservation equations, separately and before the application of a formal averaging procedure.
Thus, the final model consists of as many sets of conservation equations as phases in the multiphase system, which makes this approach
significantly more involved than the mixture approach. Moreover, since the averaged behaviour of each phase cannot be independent of each
other, a number of interaction terms (accounting for the mechanical, chemical and energy interactions between phases) appear now explicitly
in the formulation. On the upside, the multiphase flow approach is considered more fundamental, as it allows for more general formulations
(e.g. non-equilibrium interactions, different governing equations for different phases), it provides explicit and formal relations between the
mixture properties and those of the local constituent phases, and offers a more consistent description of the interaction between phases
(Ishii 1975; Hassanizadeh & Gray 1979a, 1993; Drew & Passman 1999; Jakobsen 2014; Ricard 2015). At least in principle, this is true. In
practice, however, the choice of truly multiphase models over simpler mixture-type models depends on the actual nature of the multiphase
problem, the goals of the simulation, and the amount of information available to model the interaction terms. It is well-known that when the
dynamics of the phases are strongly coupled (i.e. phases are always close to mechanical and thermal equilibrium), as commonly assumed in
most geodynamic studies, mixture-type models are adequate. However, the range of applicability and/or reliability of such approaches can
be rather limited, leaving a large number of important geological scenarios out of scope (e.g. creation of magmatic chambers, fast magma
migration, dynamics of volcanic eruptions, out-of-equilibrium processes, etc.).

Considering the current ‘big-data’ and ‘data-assimilation’ trends in Earth sciences, as well as the wide range of scales and feedback
mechanisms involved in geological phenomena, next-generation numerical models of MPMCRT will likely be based on (at least) two
main ingredients: (1) a general and scalable multiphase approach valid over a wide spectrum of scales and problems coupled with (2) a
sound non-equilibrium chemical thermodynamic framework for the reactive and chemical transport problems. While the incorporation of
reactions/phase changes and tracking of chemical species into a multiphase model adds considerable complexity, it does provides a more
fundamental platform for modelling the complex couplings between mechanical and geochemical phenomena at multiple scales and therefore
it contributes to achieving a more complete understanding of the feedbacks between thermal, mechanical, and chemical processes in the
Earth.

The above two ingredients would provide a reliable platform that can be used not only to study the dynamics and feedbacks of
multiphase systems of different nature and scales (the predictive forward problem) but also the possibility of directly comparing simulation‘s
results with both geophysical and geochemical data sets simultaneously. This is needed if we are to take full advantage of geochemical,
and especially geophysical, data-assimilation techniques and formal inverse methods to constrain, interpret and/or calibrate the results of
MPMCRT simulations. In this context, only few studies within the geodynamic community have made progress towards a consistent coupling
of the above two ingredients into a single numerical framework. In a seminal paper, Tirone et al. (2009) used a two-phase dynamic model in
conjunction with an equilibrium thermodynamic model to couple the dynamics of the system with the physical properties of the (dynamically
evolving) mineral assemblages and melt in a thermodynamically consistent manner. Similarly, Hebert et al. (2009) coupled a thermodynamic
model (pHMELTS) with a single-phase, 2-D thermomechanical code to describe and compare fundamental processes occurring within
subduction zones. Both works thus used, for the first time to our knowledge, the so-called ‘dynamic-approach’ of incorporating equilibrium
thermodynamic information into a thermomechanical simulation of mantle flow.

The ‘dynamic-approach’ involves solving energy minimization problems ‘on the fly’ as required by the local flow conditions (e.g. T, P,
composition) under the assumption of local equilibrium (e.g. Saxena & Eriksson 1983; Wood & Holloway 1984; de Capitani & Brown 1987;
Ita & Stixrude 1992; Sobolev & Babeyko 1994; Saxena 1996; Bina 1998; Connolly & Kerrick 2002). Although the advantages of the dynamic
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approach are many in terms of generality, thermodynamic-mechanical consistency and the richness of the information available, the need for
solving a large number of minimizations at each time step of the simulation has rendered it unpopular. By contrast, the ‘static’ approach retrieves
the physical properties of the phases from pre-calculated tables (typically stored in memory during the simulation) obtained by prior energy
minimization computations. Examples of the latter within the context of single-phase simulations are abundant (e.g. Sobolev et al. 2006; Afonso
et al. 2008; Babeyko & Sobolev 2008; Liu ef al. 2011, 2014; Chen & Gerya 2016); examples in two-phase flow simulations are Dufek &
Bachmann (2010), Karakas & Dufek (2015) and Malvoisin ef al. (2015). An even more popular approach involves ad hoc empirically
calibrated parametrizations, which despite lacking generality and/or thermodynamic consistency, are extremely computationally efficient
and circumvent the need for energy minimization computations altogether (e.g. Katz 2008; Rudge ef al. 2011; Weatherley & Katz 2012;
Keller & Katz 2016).

The present work is an initial attempt to outline the basic conceptual and numerical frameworks of a general MPMCRT approach and
some of the ways in which equilibrium and non-equilibrium chemical thermodynamics can be used in conjunction with a true multiphase
approach to model a wide variety of problems in Earth sciences. In contrast to past approaches, ours is ultimately based on the effective and
accurate tracking of the system’s chemical components and internal energy in a full visco-elasto-plastic formulation. With this information,
the chemical thermodynamics component allows us to obtain both local equilibrium and/or non-equilibrium assemblages (i.e. thermodynamic
phases and their compositions) and their relevant physical properties (e.g. density, seismic velocities, heat capacities, etc.) everywhere in
the system. These properties in turn are used in the solution of the governing balance equations, and therefore the mechanical and chemical
problems are tightly coupled and thermodynamically consistent. We will also demonstrate that a judicious combination of the dynamic and
static coupling approaches, based on phase equilibria computations, is not only desirable, but computationally efficient (see also Afonso
et al. 2015).

1.2 Definitions
We begin by briefly describing some important thermodynamic and mechanical terms used throughout this work:

(i) A thermodynamic phase is defined as a homogenous body of matter having distinct physical properties, composition, and boundaries
(e.g. a mineral grain); therefore it is in principle mechanically separable from adjacent phases.

(ii) A thermodynamic system is any aggregate of thermodynamic phases, separated from the rest of the universe by actual or imaginary
boundaries; the system is called homogeneous if composed of only one phase and heterogeneous if composed of multiple phases.

(iii) System components are the minimum set of chemical formulae necessary (and arbitrarily chosen) to describe the total chemical
composition of the thermodynamic system. They need to (1) be linearly independent and (2) span the entire compositional range of the system
under study. The term ‘multicomponent’ in our MPMCRT formalism refers to these components. System components may or may not exist
as real chemical entities that can be observed in nature (e.g. molecules, ions, etc.). The latter are referred to as chemical species. For instance,
we typically represent the composition of a rock (our system) in terms of oxides (e.g. SiO,, MgO, FeO, etc.), but we do not imply that the
rock is made up of such oxides. Chemical species are denoted using superindex b.

(iv) Phase components or solution components (also known as solution end-members) are chemical formulae specific to a thermodynamic
phase, used to describe the compositional range allowed in that phase. They need to (1) be linearly independent, (2) represent a minimum
set, and (3) preserve the structural integrity of the thermodynamic phase. For instance, while SiO,, MgO and FeO can be used as system
components when working with olivine (Mg, Si04-Fe,SiO,4) and orthopyroxene (MgSiO;-FeSiO;) solid solutions, they cannot be used as
phase components, as they cannot be varied independently while preserving the structural integrity of the phases. In this case, a valid set of
phase components is Mg, SiOy4-Fe,Si04-MgSiO;-FeSiO;. As for the olivine example in Section 5, the phase components are forsterite and
fayalite (Mg, SiO4-Fe;Si0y).

(v) A dynamic phase is defined as a macroscopic unit of mass, composed of one or more thermodynamic phases, with a distinct dynamic
behaviour (significantly different from other dynamic phases in the same system) and clear boundaries that separate it from its surroundings.
The dynamic behaviour of each dynamic phase is therefore controlled by a separate (and potentially different) set of conservation equations.
Dynamic phases are the fundamental entities considered in multiphase modelling approaches. For instance, the percolating melt and the solid
porous matrix in a segregation problem (Fig. 1a) are considered distinct dynamic phases. Lithologies with significantly different physical
properties could be also considered different dynamic phases under some circumstances. Dynamic phases are denoted throughout the text by
subindexes £, j, or /.

(vi) We understand an internally and thermodynamically consistent formulation of MPMCRT as satisfying three minimum requirements:
(1) be a complete set of governing equations where the main variables in the system are related to each other via fundamental thermodynamic
rules (e.g. absorbed/released latent heat in the energy equation is consistent with the amount of phase change computed in the mass-
conservation equation), (2) all thermodynamic properties appearing in the conservation equations are either explicitly obtained from, or
proved consistent with, derivatives of thermodynamic potentials, and (3) Maxwell’s relationships are satisfied up to the first order, at least.
Formulations that do not satisfy either one or both of the last two requirements can be considered as partially thermodynamically consistent.

(vil) A multiphase approach is here understood as any formalism based on the principles of continuum mechanics where the dy-
namic behaviour of the dynamic phases or system of dynamic phases are modelled with the explicit consideration of interfacial transport
phenomena.
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Figure 1. Two schematic illustrations of ensemble averaging. (a) Different ensemble averaging stages over a single realization 7 (thin section) concerning a
well-equilibrated mantle eclogite (garnet + clinopyroxene) with triple point (~120°) grain boundaries. Note that the three different stages are represented on the
same thin section, thus same realization 7 and time 7, but on different spatial coordinates along the thin section. The presence of recrystallized amphibole along
grain boundaries in the left panel suggests percolation of a late metasomatic fluid. Here, properties of the system, ®, as well as local conservation equations,
are defined over the entire domain. The characteristic function of the metasomatic fluid, x fyuig, is depicted in the central panel where xquig = 1 indicates the
region containing the fluid phase. If the local conservation equations valid in the entire domain are multiplied by xauiq (i-e. first step in the text), we obtain
the phase-conditioned balance equations. In other words, these equations are only defined in the highlighted region and for the particular realization 7. The
third panel represents the averaged fluid fraction field, ¢syiq, that we would obtain after ensemble averaging a large number of similar realizations. (b) Similar
to panel (a) for a field outcrop where the presence of melt is inferred from the assemblage of pyroxenites and dunites (modified from Tilhac ef al. 2016). Left
panels represent, from top to bottom, (i) four 1-D profiles illustrating a possible set of realizations (the ensemble over which averaging procedures are applied),
(i1) the characteristic function picking up the fluid phase (pyroxenite) (iii) and the corresponding averaged fluid fraction field, ¢quig. Right panels illustrate the
procedure to obtain the averaged fluid density field. First, actual densities from the four realizations are collected in the top panel, where the density difference
between the fluid and solid phases is apparent. Second, the fluid density is ‘picked out’ at every realization, xfuigp, in the central panel. Finally, ensemble
averaging is applied and a single averaged fluid density field, payid, is obtained in the bottom panel (psolig is also shown for reference).

2 ENSEMBLE-AVERAGED MPMCRT PHYSICAL MODEL

In this section, the general governing equations for each dynamic phase k are derived applying the ensemble averaging technique (e.g.
Drew 1971, 1983; Hill 1998; Drew & Passman 1999) to the fundamental microscopic conservation equations. While most of the final
equations obtained here are either similar or identical to those discussed in previous studies (e.g. McKenzie 1984; Spiegelman 1993a,c;
Bercovici et al. 2001; Bercovici & Ricard 2003; Sramek e al. 2007; Tirone et al. 2009), some are new or significantly different. The averaging
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Table 1. Main variables used in this work.

Variable Description Units Variable Description Units
b body force ms~2 Vb velocity of oxide b ms~!
C heat capacity TKg ' K™! v composition-weighted velocity ms~!
cb oxide amount (weight per cent) [-] W vorticity tensor s
Ch,j viscous interaction coefficient Pasm™2 X space variable m
D fluctuating energy dissipation Tm3s7! o interfacial area density m~!
Ey interface energy-transfer rate Jm™3 57! re interface chemical mass-transfer rate Kgm™3s7!
G shear elastic modulus Pa rm interface mass-transfer rate Kgm™3s~!
G gibbs-free energy J & strain-rate tensor 5!
g gravitational acceleration ms~2 O, surface tension hold by & and j Pa
Hpe molar enthalpy J mol~! K interfacial curvature m~!
Id identity matrix [-] n shear viscosity Pas
K bulk elastic modulus Pa Mpe chemical potential J mol~!
M interface momentum-transfer rate Pam™! & bulk viscosity Pas
m; total surface tension force Pam™! e surface energy Pam
n unit vector normal to Sy, ; [-] b4 realization [-]
P mechanic pressure Pa P density Kgm™3
P thermodynamic pressure Pa o surface tension coefficient Pam
q diffusive flux Jm2s7! o stress tensor Pa
(0] heat source Jm—3 57! T deviatoric stress tensor Pa
Spe molar entropy JTK~! mol™! ] average phase fraction [-]
Sk, j interface between & and j -1 (0] general property -1
t time S Xk characteristic function [-1
T temperature K Xi elastic shear stress evolution parameter -]
u internal energy TKg™! X /f J elastic volumetric stress evolution parameter [-]
v velocity ms~! w surface energy partition coefficient [-]
Indexes Operators
k,j, 1 dynamic phases % local time derivative
[0} w-weighted interface property % material time derivative
i interface (A) objective time derivative
b chemical species, oxides 0° spherical component
pc phase component ()/ deviatoric component
v viscous 0 average mixture property
e elastic AQk, difference between k and j, O — (),

yielding () ensemble averaging operator

()” fluctuating variable

Miscellaneous
> kOk sum over all existing dynamic phases
> 1Okz sum of a given interfacial property over all interfaces delimiting dynamic phase k. For example, ZZ# (TE =T ;T e
>z kOkz sum of a given interfacial property over all the existing interfaces. For example, D - - 1Sk = Sk; + S + Stk

technique is also not-standard in the geophysical literature. Therefore, for clarity and completeness, in what follows we provide a detailed
derivation the fundamental MPMCRT set of averaged equations. List of the variables used in this study is given in Table 1.

2.1 Ensemble averaging

In theory, the dynamics of MPMCRT could be studied by solving the local (microscopic) conservation equations (e.g. mass, momentum,
energy) in each dynamic phase, provided that the exact location of the interfaces is known and accounted for. This approach forms the
core of some small-scale engineering and geoscience applications (e.g. Scardovelli & Zaleski 1999; Jessell et al. 2001; Jing 2003; Kang
et al. 2006). For the case of MPMCRT in the Earth, however, it is neither desirable nor possible to work with such a detailed description of
the system (as the ones shown in Fig. 1a left panel) at most scales of geodynamic interest. A more practical and widely used approach applies
averaging formalisms to the phase-dependent conservation equations to obtain a macroscopic description of the multiphase flow without the
explicit tracking of interfacial discontinuities/structure. The purpose of averaging is therefore to replace a deterministic, exact (but complex)
multiboundary problem with a more tractable macroscopic one valid at coarser spatial and temporal scales (cf. Drew 1971, 1983; Ishii 1975;
Ishii & Hibiki 2006). Consequently, the attention is shifted towards the average behaviour, structure and properties of the multiphase flow,
such as average melt content, average phase flux, and average chemical composition of each dynamic phase. The latter are therefore treated
as independent continuum media defined over the entire domain. Dynamic phases are, thus, modelled with their own averaged macroscopic
set of equations (accounting for the amount of phase present in the region), but explicitly considering interfacial phenomena.

We use ensemble averaging as the basis of our MPMCRT model (Drew 1971, 1983; Drew & Passman 1999). This averaging method,
which stems from statistical mechanics, is rapidly becoming the preferred option in engineering and physics applications as it provides some
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significant advantages over other existing averaging strategies. For instance, contrary to time and/or volume averaging, ensemble averaging
does not require the existence or explicit consideration of a control volume or averaging time span that dictates the applicability of the
averaged equations (Drew & Passman 1999; Ishii & Hibiki 2006). Moreover, it is readily applicable to a wide range of spatial scales, that
is, a small-scale late metasomatic fluid formation and migration along grain boundaries or a meso-scale melt migration problem as shown
in Fig. 1. It can also be shown that volume and time averages are special cases of ensemble averaging (e.g. Drew & Passman 1999), and
therefore the latter is considered more fundamental.

In simple terms, ensemble averaging is based on the probability of the multiphase flow being in a particular configuration or state at a
given time. Therefore, an elementary concept of ensemble averaging involves simply adding many observed flow configurations/realizations
and dividing by the number of observations. This large set of realizations is referred to as the ensemble. Each of the realizations will be
different within a range of variability that we can observe, but all sets/ensembles based on these realizations will be identical in an average
sense. Alternatively, perhaps a more practical conceptualization is assuming that the flow is deterministic, but a certain degree of randomness
arises due to uncertainties, for example, in the initial conditions, physical parameters, phase location, or turbulence in the flow (Saffman 1971;
Lundgren 1972; Drew 1983; Jakobsen 2014). In any case, the ensemble-averaged equations can be thought of providing the ‘expected’ value,
in a formal statistical sense, of the property of interest. Depending on whether discrete or continuous probabilities are used for the realizations,
the ensemble average of a generic scalar, vectorial or tensorial quantity ® can be defined either as,

1 _

(@) (x,1) = (@ (x, 1;7)) = lim — Z ® (x. 1:7) M

or

(P)(x, 1) = (P(x,t;7)) = / D (x,t;7) p(w)dm =/ D (x, t;)dm(m) 2)
Q Q

where the ensemble averaging is denoted by (o), a single realization by 7, x and ¢ are the usual space and time variables, and p(r) dr =
dm(r) is the probability that the flow configuration is between 7 and w+dm on the set of all possible realizations 2. With these definitions,
p() is a true probability density function satisfying

/ p(m)dr = 1. 3)
Q

The reader is referred to Drew & Passman (1999) for thorough discussions on the properties and fundamentals of ensemble averaging.

2.1.1 Phase or characteristic function

Applying the averaging operator directly to the conservation equations of each phase results in some mathematical difficulties (related to the
discontinuities in the fields associated with phase boundaries, Drew & Passman (1999); Jakobsen (2014)) that can be avoided by introducing
a phase or characteristic function, x (X, t; ), defined as

1 if dynamic phase k presentat (X, ¢; 1),
Xk = . . “)

0 otherwise

This function is mathematically expressed in terms of a Heaviside step function and therefore it plays the role of ‘picking out’ phase k&

from the multiphase mixture while ignoring other phases and interfaces. This is illustrated in Figs 1(a) (central) and (b) (left-central) panels,
where the fluid phase (inferred from the residual lithologies) for both (a) a single and (b) several realizations, are highlighted with ) g, = 1.
The important point is that the phase function is assigned the properties of a generalized function, which is especially useful when dealing
with discontinuous functions and their differentiation within integrals (Drew 1983; Jakobsen 2014). In particular, using the properties of
generalized functions, it can be shown that x, evolves according to the so-called topology equation

a
- TVi V= (6))

where v; is the velocity of the interface (Drew 1983; Jakobsen 2014).

2.1.2 Averaged properties

General properties, ¢, may be discontinuous over single realizations concerning multiple phases as shown in Fig. 1(b) (top-right). With
definition (4), the product y;® represents the isolated or ‘picked’ phase property (in this case, ®) of a single realization of the multiphase
flow. This is schematically shown in Figs 1(a) (middle) and (b) (middle-left) for & = 1 and in Fig. 1(b) (middle-right) for & = p. Once @ is
isolated from its surroundings on the set of all possible realizations €2, we can apply the ensemble average operator to it in order to obtain an
average description of ® inside a given dynamic phase k&

1
(@) = lim — 3 (©)
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as illustrated in Figs 1(a) (right) and (b) (bottom panels). Since y is zero everywhere but in regions where phase k exists, we can rewrite the
sum in eq. (A4) in terms of realizations where only phase £ is present (denoted by ),

1
(x®) = lim = > @
Tk

T—00 JT

Il
i
M
ERS
-
™
LS

1
= - 1' -_ @
¢ lim — 3

= ¢ Py (N
where,
& = (xx) is the average phase fraction;
D) = limy, # > m®  istheintrinsic or phase-weighted average.
The intrinsic or phase-weighted average ®;, = (Xdﬁ—;’) defines ‘true’ phase averaged quantities of any property . A graphical representation

of both the average phase fraction and the intrinsic average is given in Fig. 1(b) bottom panels. Taking the example ® = p (bottom-left panel),
the intrinsic phase average of the density refers to the ensemble-averaged density of the phase and it exists wherever the phase has been
observed (region delimited with dashed lines), regardless of whether the phase coexists with other phases (multiphase region) or not. In the
region where ¢, is neither one nor zero (coexisting phases), the average (x;P) = ¢, P, is the weighted density (perhaps it is easier to think
of the equivalent weighted mass), according to its ensemble average amount ¢y, assigned to the continuum and thus used in the conservation
equations.
According to eq. (A5), the average phase fraction, ¢y, is the ensemble average of the characteristic function itself,

0 = lim ~3 5 = lim 2 = g, ®)

T—00 JT
b4

since x is zero everywhere but in regions where phase k exists. From eq. (8) it is clear that ) ;¢ = 1. In other words, the ensemble average
of the characteristic function yx is the number of realizations where phase £ is present, 7, divided by the total number of realizations (i.e.
average occurrence). It has become customary to treat ¢, as equivalent to the local volume fraction of phase £ from volume averaging.
Although this can be shown to be true for spatially homogeneous, non-fluctuating, flows (as in our case), it is perhaps better to think of ¢, in
terms of the meaning assigned by ensemble averaging: it is the expected value of the ratio of volume of phase & to the total volume, in the
limit when volume tends to zero. Alternatively, it can also be viewed as the probability that a particular phase is present at a particular point
in space and time. In two-phase studies within the geodynamics community, ¢ is commonly assumed equal to porosity. Here, we will refer
to ¢ as the ‘average phase fraction’ and generalize this definition to incorporate multiple dynamic phases into our formulation. More details
on the nature of the characteristic function and ensemble averaging relations are given in Appendix A.

2.1.3 Averaged conservation equations

With the aid of x, and (o), and following a similar procedure to that introduced in Fig. 1, any ensemble-averaged conservation equation for
any dynamic phase & can be derived following two simple steps. First, the individual conservation equations valid in phase & are multiplied
by x in order to isolate the individual phase contribution to the multiphase assemblage. We refer to the resulting conservation equations as
the phase-conditioned conservation equations. Contributions to the phase-conditioned conservation equations for the fluid phase come only
from regions containing the fluid, since the rest of the domain is multiplied by xguq = 0 (Fig. 1a, central panel).

The second step is the actual application of the averaging operator to the phase-conditioned conservation equations. Since in essence
the ensemble average is the generalization of adding the values of a given phenomenon for each realization and dividing it by the number
of observations, the averaged conservation equations for each dynamic phase, £, are obtained by ensemble averaging a large set of phase-
conditioned local conservation equations.

The set of averaged equations obtained after applying the above two steps is rigorous, but not solvable, as it contains averages of products
of the independent variables. In order to overcome this problem, the averages of products are related to products of averaged variables. This
is typically achieved by making use of either phase or mass-weighted averaged variables, as shown in the next sections (also Appendix Al).

2.2 Mass conservation

Continuum mechanics assumes that mass is absolutely continuous with respect to volume. Therefore, the Radon—Nikodym theorem proves
the existence of a material property called density p, defined pointwise on the medium, that allows to write the local mass conservation
equation as

ap
L 4+V-pv=0 9
az+ oV ©)
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where v is the velocity vector and (% denotes the partial time derivative. As explained in the previous section, eq. (9) is multiplied with x in
order to isolate the contribution of the dynamic phase k&

op dXikp 0 Xk
- AvAN =0 V¥ = p— -V
X, + xxV - pv = ” + V- xepv=p ot + oV - Vi
9 Xkp
o TV ey =p(v=v) -V (10)

where v; is the velocity of the interface and the topological equation in (A3) has been used in the last step. Eq. (10) represents the
phase-conditioned mass balance equation for the dynamic phase k. We now apply the ensemble average operator to eq. (10) and obtain

3)( P — V—V V
< /; > (‘7 . X/((}V) = (P( i) . Xk)
d 94 — —V, V
<X3]t : + V- {xepv) ={(p(V—=V1)Vxe). "

The right-hand side term represents the averaged interfacial mass transfer between phase & and the surrounding phases, which is
exclusively non-zero on the interface between phases (see further details on interaction terms in Section 2.6).
To render eq. (11) solvable, we rewrite it in terms of average properties. This yields the final mass conservation equation for a single

dynamic phase £,
0Ps px ,,,
2 TV @emv) = oy (12)
z#k

where

o = () is the averaged phase fraction,

Ok = xep) is the averaged phase density,

¢k
_ {Xepv) . . i
Vi = n is the mass-weighted averaged phase velocity,
k Pk

> ali-=(p (v—v;)- Vyxi) istheinterfacial mass transfer rate.

We note that the averaged velocity in eq. (12) refers to a particular description of the velocity: the mass-weighted phase velocity. Although
other average velocities are useful in analysing different aspects of multiphase systems (e.g. intrinsic average in eq. A5), the mass-weighted
phase velocity has a dominant role when analysing the dynamics of the system. Importantly, the mass-weighted phase velocity is the direct
extension of the fundamental centre-of-mass velocity to multiphase averaged systems (Ishii 1975). It is also the averaged velocity field
resulting from ensemble averaging the mass and momentum equations written in terms of density, and therefore also the appropriate one for
describing diffusion fluxes of chemical species. The mass-weighted velocity in eq. (12) should then be understood as an additive set function
of mass in space and time, as depicted in Fig. 2. In any case, if the dynamic phases are considered to be incompressible (thus, constant phase

densities along mass trajectories), both definitions intrinsic and mass-weighted are equivalent, and v, = % = 05;/” .
For incompressible dynamic phases, eq. (12) becomes
R10) 1 ”
aTk V@)= Sorp. (13)

k z#£k
An overall total mass conservation equation can also be stated from eq. (13) by summing over all phases

SV = Xt (5 - o) (14)
k

k z>k Pj

2.3 Momentum conservation

The local force-balance equation is described as,

9
§+V~pvv=v-a+pb (15)

where o is the total stress tensor (see Section 2.7 and references therein for further discussion on the form of ¢) and pb the body force term.
Eq. (15) describes the variation of momentum in a unit volume due to (1) advective transport of momentum across the surface (left-hand side),
(2) molecular momentum flux across the surface of the volume (surface forces) and (3) body forces acting throughout the volume (right-hand
side). Again, we isolate the £ phase contribution and apply ensemble averaging to eq. (15), which gives

{xrov)
ot

+ V- (xepv) =V - (xeo) + (xepb) + ([ov (v — Vi) — 6] V). (16)
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’ ~ phase j
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\ j - phase k
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Figure 2. Deformation of a continuum made up of two dynamic phases (k and ;). The boundaries of the two phases k and j are represented by solid and
dashed lines, respectively. The initial undeformed configuration depicts an infinitesimal control volume where the two phases coexist. Each of the phases is
advected with its corresponding mass-averaged velocity and adopts a deformed configuration where Q is the barycentre and P is a reference Lagrangian point.
If incompressible phases are considered, only volume changes related to phase transformations are possible and in the absence of such transformations, their
true individual velocities should be solenoidal (V - v = 0). However, the averaged velocity field is not divergence-free, even in the absence of phase changes
(eq. 14). This phenomenon (also called compaction or squeezing, see Appendix C4) is due to the relative movement of the dynamic phases, which results in
local variations of average phase fractions, ¢, rather than the intrinsic incompressible/compressible nature of the materials. We compute deformations relative
to infinitesimal volumes, where the individual strain-rate tensors for each dynamic phase are defined as a function of their respective gradients of mass-weighted
velocities (see Appendix A3 for more details on the obtention of the averaged strain-rate tensor).

The last term in the right-hand side represents the balance of momentum across the interface and is composed of two terms: a term
accounting for the momentum exchange due to inter-phase mass transfer processes (e.g. phase change) and a ‘mechanical’ term describing
the force balance at the interphase. Interfacial momentum transfer is associated with a number of effects/processes occurring in multiphase
systems such as capillarity (i.e. surface tension) and/or drag forces, among many others. More details on the nature of the interface are
provided in Section 2.6.

Eq. (16) can be rewritten in terms of averaged variables as

w + V- @eoivivi) =V - i [0k — 0] + deoib + ;Mk,z 17)
where

b, = <Xf):)> is the averaged body source,

oy = (X(;%) is the averaged stress tensor,

ok = M is the Reynolds stress,

Z#k M; . (ik ([ov(v—v;) —0o]-Vy) istherate of interface momentum transfer,

where the Reynolds stress tensor is an additional component of the averaged stress tensor obtained from the averaging operation, which
accounts for turbulent fluctuations of the velocity field (see Appendix Al.1 for further information on fluctuating fields). The expression
above is rather general and can be further simplified. Except in the case of rapidly evolving, low viscosity fluids (e.g. volatile-rich magma,
pyroclasitc flows), inertia forces and Reynolds stresses can be neglected under the creeping flow approximation. We also assume that the
body force is purely gravitational; therefore, b = —gz = g, where g is the gravitational acceleration and z is the unit vector pointing upwards.
This work assumes an expression for the stress tensor, o, from which o (i.e. 74) is derived. In addition, the averaged stress tensor can be
decomposed into its volumetric and deviatoric parts, 6, = — P - Id + 74, where P, = — %tr (ox) is the mechanical pressure, Id is the identity
matrix and 7 is the traceless deviatoric stress tensor. The relation between averaged stresses and deformation is highly problem-dependent
and requires careful design. This is discussed in Section 2.7, where an averaged visco-elasto-plastic rheology is developed.

Bearing these assumptions in mind, the momentum conservation equation for a single dynamic phase reads

V(¢ P) = V- [¢ti] = —pepg+ ) M. (18)
z#£k
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2.4 Energy conservation

The local internal energy conservation equation is

9
%+v puv=—V.q+Q+0:Vy, (19)

where u is the internal energy per unit mass, q the heat flux and Q refers to any other internal heat source (i.e. radioactive heating) per unit
volume. Following the same procedure as above, we obtain ensemble-averaged equation for a single dynamic phase &

9 {xxpu)
= HV e = =V ) + (060 2 V) + (6 0) + ([ou (v = vi) = i - V). (20)
In terms of averaged variables, eq. (20) reads
i pru .
# + Vo (e pivi) = G0k 2 Ve = V- @y (i + 7)) + ¢ O + 6D + Z Ey.. (21)
z#k
where
U = (;(),{7,014) is the mass-weighted averaged internal energy,
%k Pk
q = ()Z;(D is the averaged energy flux,
k

"o

Re __ (kav]\u]\)

k <Xk$

Qi = is the averaged heat source,

is the Reynolds internal energy flux,

Dy = (XW“TV“‘) is the averaged fluctuating energy dissipation,
> u Erz= ,Z[,ou (v—v;)—q]-Vyx:) istheaveragedrate of interfacial energy transfer.

In eq. (21), the interface contribution is hidden in the interfacial internal energy transfer term, which is further discussed in Section 2.6.
Note that (x;0 : VV) # ¢p0, : Vv and V - (x,q) # V - ¢rqx, since the right-hand side of eq. (21) includes the Reynolds internal energy
flux and the energy dissipation due to fluctuating fields (see also Appendix Al.1) Under the slow creeping flow approximation, fluctuating
velocities are presumably small and these terms can be assumed negligible in comparison to ;. This assumption circumvents the problem
of formally defining qf¢ and Dy, which would require additional closure relations, thus increasing the number of unknowns and constitutive
equations.

For the purposes of this work, we solve a single energy balance for the mixture rather than N energy equations for the N constitutive
phases. This implicitly assumes that temperature changes in the multiphase system are sufficiently slow for the temperature to equilibrate
locally between the phases. If the fluid (e.g. melt) percolates at very high speeds on a coarse matrix network, this assumption will not hold.
However, in the context of melt generation and migration inside the Earth, it is expected that the assumption of thermal equilibrium between
dynamic phases applies. The validity of, and justification for, this commonly used assumption in melting scenarios has been discussed,
among others, by Fowler (1985) and Tirone et al. (2009). In any case, the MPMCRT formulation presented here can be readily modified to
accommodate for more general conditions, as discussed later in Section 6.1.

From eq. (21), the conservation of energy for the whole system can be written as

) [W +V- (¢>k,0kukvk)] + aa{Ta + Ve Cavy) =Y (g0 Vi — V- dii + 3 0] + V - (0av,,) (22)
k k

where the averaged rate of interfacial energy transfer, > ) . «Ej ., is now explicitly modelled through the surface energy ¢ and surface
tension coefficient o', which are related via § = o — T 9% do % (cf Ishii & Hibiki 2006), where T refers to temperature. The ‘volumetric” effect of
the interface is quantified by the interfacial area per umt volume, «, which is transported by the average interface velocity v,, (further details
in Section 2.6).

A more familiar form of eq. (22) can be obtained representing it in terms of temperature, 7. Assuming incompressible and homogenous
dynamic phases (i.e. the adiabatic gradient vanishes), we have that the isochoric heat capacity Cy and the isobaric heat capacity Cp of each
phase are the same. Therefore, for each phase &, we have Du;, = C; DT}, where C; is the intrinsic phase average of heat capacity. Furthermore,
under the assumption of thermal equilibrium between coexisting dynamic phases (and their dividing interface), we can rewrite eq. (22) in
terms of a single temperature field, which leads to the total energy conservation equation for a multiphase system,

D, do do
Z¢kﬂkck T — T*( d7> Ta—V-v,=0-V- q+ZZCkZAka Avkz+z¢k7:k Vv

z>k

_ Z (P [_)k Dk (u o + Z Z AszF]Tz (23)

z>k

where and  are the standard material derivatives with respect to v; or v,,, respectively.
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Eq. (23) describes the evolution of the averaged temperature of a system formed by incompressible dynamic phases, under the assumptions
oflocal thermal and thermodynamic equilibrium. It is derived combining the conservation of internal energy of the whole system (22), together
with the complete mass and momentum equations (eqs 12 and 17), and their respective interaction terms (see Section 2.6). Time-dependent
temperature changes are computed in the left-hand side, whereas the right-hand side terms are related to heat sources and fluxes, including
(in order) internal heat sources Q, thermal diffusion V - ¢, work associated with the mechanical interaction between phases, mechanical
dissipation, work due to out-of-equilibrium pressure differences between phases and interfaces, work done by surface tension, and heat
release due to phase change effects. The last term in eq. (23) ensures consistency between the computed temperature field and the enthalpy
(hj=u; — :—;) of the reactions occurring in the system. Note that the released/absorbed heat due to any and all phase transformations is
retrieved from the Gibbs free-energy minimization solver (Section 4.4).

2.5 Chemical transport

Ignoring diffusion of chemical species (or components) between dynamic phases, the local chemical mass conservation equation can be

written as

9 0 Z’b
ot

where &° refers to chemical component weight-fractions. For instance, in a system made up entirely of olivine, & would correspond to the

+ V- (pe'v) =0 24

three basic chemical oxides, MgO, FeO and SiO,. From eq. (24), we derive the ensemble-averaged chemical mass conservation equation

3 (xep2”) R

=tV (Xipc"v) = (p& (v —vi) - Vi) (25)

which can be rewritten in terms of averaged quantities as

di picy

Tk +V ¢k,0/cC1\ Vk Z F (26)
£k

where

» (X0 . .
= is the averaged component (oxide),
ik

> 2k F” = (p&’(v—v;)- Vyxi) istheinterfacial chemical mass transfer rate.

c? refers to the averaged mass fraction of any component b within each dynamic phase k. The mass transfer rate, T'? j» is defined by the
quantity of oxide b exchanged between dynamic phase & and any other coexisting dynamic phase j, and therefore, ) , > 2k ,’{"z = 0 in order
to conserve mass. In addition, F,}{’, ; needs to ensure that the stoichiometry between components inside each dynamic phase is fulfilled for a
given petrological assemblage. This is ensured via the thermodynamic solver (see Section 3). For the olivine example, ¢ refers to the mass
fraction of b = {MgO, FeO or SiO, } pertaining to k£ = {solid or liquid}; the mass transfer rate controls the component exchange between the
solid and liquid phase, ensuring that the olivine stoichiometry is satisfied in both phases individually. Thus, eq. (26) represents two different
sets of equations for the two-phase olivine system, where the components of both phases are independently transported with their respective
phase velocities.

Eq. (26) can be combined with the mass conservation equation (12), which results in the following Lagrangian chemical transport

equation

DDV; b= <Z .=y r) @27)

 ipn g prr

Both Eulerian and Lagrangian forms of the chemical transport equation describe the transport of each component in each of the dynamic
phases separately. Therefore eq. (26) or (27) applied to a N-phase Q-component system is represented by a coupled N x Q system of equations.
This system can be considerably simplified if thermodynamic equilibrium is assumed between dynamic phases (e.g. Tirone ef al. 2009). In
this case, we only need the system’s bulk composition to solve the Gibbs free energy minimization problem, thus reducing the number of
unknowns of the system from (number of dynamic phases x number of components) to O (number of components). If equilibrium between
dynamic phases is not warranted, however, separate free energy minimizations need to be performed for each dynamic phase, which would
require a detailed description of the chemistry of each dynamic phases. We discuss this further in Section 6.1.

For cases where equilibrium between dynamic phases can be assumed, an equivalent transport expression to eq. (26) or (27) can be
derived in order to solve the chemical transport for the mass fraction ¢” of any chemical component within our system. This expression is
obtained by summing eq. (26) over all the dynamic phases
apc?

ot

+ V- (pc"v") =0, (28)

where 0 =), ¢pi is the averaged mixture thermodynamic density, b= % Dk pkc,’i is the total mass fraction of component b, and
vb = i 3", droichvy refers to the averaged velocity at which each oxide b is advected. Again, for the simple two-phase olivine system,
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eq. (28) represents the individual transport of the oxides {MgO, FeO and SiO,} (but now for the total mass fraction) according to their
individual velocities vM£0, yFeO  ySiO2
Besides representing a smaller system of equations (dimension Q), eq. (28) has the additional advantage that the interfacial terms in the
right-hand side disappear from the transport equation, simplifying the numerical solution. This formulation also enables the advection of the
bulk chemistry, ¢, using a single weighted velocity, V, via the following Lagrangian description
Dy 1 — b1y b
ac = %V~(pc [V—v ]) (29)
where V = Y, ¢’v? is a composition-weighted velocity. The right-hand side (RHS) term of eq. (29) accounts for the relative motion of the
components, and therefore it corrects the bulk chemistry along the trajectory of v. Again, this term needs to ensure that the stoichiometry
between phase components is satisfied (proportionality between different oxides, that is, (RHS™C + RHSM9)/RHSS©2 = constant). This is
true, since the right-hand side of eq. (29) is a linear combination of ¢/, which are consistently retrieved from our thermodynamic model and
thus preserve the stoichiometry. Indeed, after some algebra, and using the definitions of ¥, v’ and c”, the RHS of eq. (29) can be decomposed

as (dropping off %V),
ﬁcb[{, _ Vh] — ﬁcb (Z cbvb> _ ﬁCbe
b

<’ (Z > ¢kPkaVh) D AL

bk ;
¢’ (Z D bepic™y ) DAL

kb %
(Z ¢kpkcf) (Z ¢k;0ka> - Z BrPkCL Vi (30)

; K k

Furthermore, it is easy to show that mass is conserved, as Y, %V - (pc’v = v*]) = 0.

D=

2.6 Interface and interaction terms

The treatment of interfacial phenomena is the most important ingredient of multiphase flow models, as phase interaction terms control the
type and degree of thermo-mechanical-chemical coupling between dynamic phases and thus they ultimately define the nature and behaviour
of the multiphase system (cf. Ishii 1975; Hassanizadeh & Gray 1979a; Gray & Hassanizadeh 1989; Ochoa-Tapia & Whitaker 1995a,b;
Sun & Beckermann 2004). As for the present formulation, interphase processes are modelled through the interaction terms arising after
ensemble averaging the local balance equations. This section is devoted to the description of such models, based on both mathematical and
thermodynamic grounds. The proposed models are by no means unique, and one should review their applicability according to the system
under consideration.

2.6.1 General considerations and definitions

Ideally, dynamic phases in a multiphase system are separated by thin transition zones, called interfaces, which in a continuum 3-D description
are treated as massless 2-D surfaces (surface and interface are used interchangeably). Although properties are generally discontinuous at
interfaces, mass, momentum, energy and chemical component conservation equations must be fulfilled. This is mathematically represented
by the jump conditions across the interface delimiting two dynamic phases, k and j (denoted as S; ; in Fig. 3),

llp(v—v:)-n|[=0

lov(v—vi)-n—o -n|| =& ;& my

llpu (v =v;))-m—q-n|| =,

llpe” (v —=vi)-n|| =0 31

where v; is the velocity of the interface, 6; ; is the true surface tension coefficient, & ; = V - n; ; is the local curvature of the interface, n; ; is
the normal unit vector to the surface (pointing outwards from & to j) and ||()|| denotes a jump of a function f'across S; ;, as ||f|| = f; — f;. The
term &y Ky, jny, ; is the force per unit area associated with surface tension at S ;, and ¢ ; is the internal surface energy of the same surface. In
theory however, multiphase system might be compound by more than one interface, as depicted in Fig. 3. We note that the jump conditions
in eqs (31) are only defined at the interface between dynamic phases & and j (S ; in Fig. 3) and therefore, unless otherwise indicated, all the
properties discussed in this section refer exclusively to this interface. In addition, the jump conditions in eqs (31) imply, first, the existence
of an explicit surface energy and a stress discontinuity (surface tension) across the interface; thus the two dynamic phases in each side of the
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Figure 3. Schematic illustration of a three-phase k—j—/ interface morphology. The interface between dynamic phases k and j, Sy ;, is highlighted. Selvedge
layers appear embedded into their respective dynamic phases (dashed lines). The thicknesses of the selvedge layers vary as functions of the phases’ viscosities

(1 < 1 < k).

interface are subject to different pressures in the presence of surface tension. Second, they require a phase-boundary whose shape, location
and orientation is known.

Representing surface processes in terms of jump conditions over an infinitesimally thin layer, however, is a mathematical idealization. In
practice, we need expressions for the average macroscopic behaviour of microscopic interfacial processes, rather than a detailed description
of the thermodynamic state of the interface. The location and orientation of the interface is given by V yx, which is in fact a delta Dirac
function centred at the interface, times ny ;. V x; plays the role of ‘picking up’ the interface k& from the multiphase mixture, and therefore
it can be understood as the characteristic function for the interface. Since the exact location and orientation of the interface is unknown in
our formulation, we need to incorporate its effects on the mixture’s properties/behaviour by computing average interface properties. Under
isotropic conditions, the ‘volumetric’ average effect of interfaces is controlled by the interfacial area density, o ; (Ni & Beckermann 1991).
This parameter, which is defined as a; ; = —(ny ; - Vx4), is commonly modelled as a function of phase abundances ¢, and ¢;, but it can
adopt different forms depending on the application. One of the simplest forms is that proposed by Ni & Beckermann (1991) and generalized
in Bercovici et al. (2001)

@ = aodid) 32)

where «, a and b are parameters (typically constants) accounting for different material properties and geometries of the interface. For
illustrative purposes, we will adopt this form in this study, acknowledging that it may be too simplistic to model real scenarios of geological
interest.

Further insight on the interfacial terms can be gained by ensemble averaging the jump conditions in eqs (31). Following the same two-step
procedure as in Sections 2.2-2.5, jump conditions are first multiplied by |V x| (not by x, as discussed above) and then ensemble-averaged
to give

pv=v)]- Vi) +{lp(v=v)]-Vx;) =T}, + T} =0
V(v =) =0l - V) + ([ov(v = Vi) =01 Vx;) = My + M, = oy ; (ke ;V xa)
lou(v—=vi)—q]l- Vi) +{lpu(v—=v))—q]-Vx;) = Ey; + Ejx = &,

[oe” (v = vl Vi) 4+ ([pe” (v = V)] - Vy;) =T¢, + 17, =0 (33)

([
([
(
(

where o ; is the averaged surface tension coefficient (assumed constant), ¢ ; = (Z. i Vx) is the averaged surface energy for Sy ;, and

M, ;, E; ; and I'? . are the mass, momentum, energy, and chemical

Vxir = —Vy; at the interface between the two dynamic phases. I'}’ T

k.j>
components interaction terms, respectively, across Sy ;. As previously mentioned, under the framework of ensemble averaging, interfaces as
well as dynamic phases are treated as continuum average quantities that exist over the entire domain. Consequently, interaction terms become
averaged effective body sources acting at all points in the domain. Among the existing models for the averaged surface body force (Bercovici

et al. 2001; Fischer ef al. 2008, and references therein), we consider
ok (R Vxe) =V (o 0% ) (34)

where surface tension variations along the interface (i.e. Marangoni effects) are assumed negligible.

The results in eqs (33) provide formal conditions that interaction terms need to fulfil; yet, they are relations for individual averaged
surfaces (e.g. S, ;). What we seek now are averaged relations concerning the union of all the interfaces of interest so as to define averaged
interface variables such as interface density «, interface pressure P, or interfacial velocity v,,. For this, we collapse the contribution of all the
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surfaces into a single average interface, S = Y x> .. xS -, which enables us to write expressions for the total averaged surface tension force
m; and total averaged interfacial energy ¢ as,

m; = Z Z Vo :01.) = V(o)

k z>k

EDIPIN (35)

k z>k

The averaged mechanical and thermodynamic state of the interface is thus described by its surface energy ¢, surface density
2k Yook %Ok
o

energy excess (or anomaly) resulting from the rearrangement of atoms near the surface (Leo & Sekerka 1999; Fischer et al. 2008). When
creating a new surface area, atomic bonds near the exposed surface are broken in order to create a new relaxed atomic environment, which
will in general differ from the original equilibrium structure (Sutton ef al. 1996). The surface energy is thus the amount of energy required to
create this new surface area with the same atomic structure. From a thermodynamic point of view, it is defined as the excess Gibbs free energy

@ = > 4> .- ., and the effective surface tension coefficient o = . The surface energy is typically considered to be an

per unit of surface area (i.e. the thermodynamic potential per unit of surface area that is required in order to reversibly increase the surface
under consideration). Therefore, the surface is not an infinitesimally thin section delimiting dynamic phases, but the sum of two layers (each
several molecules deep and embedded in the dynamic phases conforming the interface), where the energy anomalies exist. This two layers
are often referred as selvedges, and are illustrated in Fig. 3.

Since surface energy is the sum of the energy anomalies existing at the selvedges of each dynamic phase, we assume that when ensemble
averaged, interfacial quantities such as interfacial energy ¢ and surface tension force m; (eqs 35) are not uniformly partitioned among the
coexisting dynamic phases, but according to their molecular bond strength; in other words, in proportion to the extent to which the selvedge
layers are embedded in their respective dynamic phases. As such, the apparent partitioning of the averaged interfacial energy, as well as
surface tension between the phases, can be modelled via a single weighting fraction w;. Based on these considerations, Bercovici & Ricard
(2003) suggested a definition for wy, considering that materials with stronger molecular bonds (and therefore larger activation energies),
carry larger energy anomalies, and thus, their contribution to the total surface energy is greater. They defined wy as a function of viscosity,
arguing that information about the activation energy (or molecular bond strength) is mainly contained in this material property (see section 3
in Bercovici & Ricard (2003) for further discussion on the topic). Here we extend their definition of the partition coefficient w; to multiple
dynamic phases, as,

o = Drlik (36)

B Zk ¢/(l‘c/c ’
where 0 < w; < 1. In summary, eq. (36) implies that the dynamic phase with larger viscosity/activation energy carries more surface tension
and surface energy with it. For two dynamic phases (fluid (f)—solid (s)) at mantle conditions, p; < s and hence wy = 0.
In the following we provide further details on the modelling of interaction terms for both momentum and energy conservation equations.

2.6.2 Momentum interaction term and surface tension

The momentum interaction force for a given dynamic phase £ results from the forces acting on that particular phase across the multiple
interfaces ) . yM, . is written as,

D M =(lov(v—=v) —0] Vi) & Y i Avi + PV + oV (o) (37)
2k £k
where the phase change contribution to the momentum exchange has been neglected (appropriate for geodynamic timescales), and only
mechanical effects have been taken into account. ¢ ; is a symmetric, rheology-dependent interaction coefficient between phase j and & (see
below), Avy ; = v; — V; is the velocity difference between dynamic phases, and P, refers to a constant interfacial pressure (see below). As
mentioned before, V(o) is the effective body force accounting for the averaged surface tension in the system (eq. 35). The first two terms
in the right-hand side of eq. (37) represent the Galilean-invariant interaction force due to interfacial stresses, that is, mechanical interaction
or interfacial drag forces between phases. The last term represents the surface tension contribution to each dynamic phase from all existing
surfaces. Although this seems somewhat counterintuitive, it is consistent with the continuum approach to modelling surface tension effects. For
the example depicted in Fig. 3, according to the definition in eq. (37), phase £ is also influenced by interfaces in the system other than its own
(hereafter referred to as external surface tension, S; 1), since V(oa) =Y > .- V(o) j (where D ;Y .o V(a0 ). ;=Y k) - i V() -0 2)).
The nature and extent of this external surface tension is, however, reflected in w; (by the presence of 1; and u,) and thus, indirectly included
when the total surface tension is weighted by w;. When the external surface tensions in §; ; and S; ; are negligible in comparison with that on
Sy, ; (Fig. 3), the total surface tension force is the surface tension in Sy ; (V(oo) = V(o) ;).In this case, p; > u; > p; and hence w, = 1. On
the contrary, if surface tension is negligible on Sy ; and S x, we obtain w; = 0, and thus there is no surface tension effect acting over dynamic
phase k (w; V(o) = 0), even in the presence of external surface tensions in S ; (V(oa) = V(oa); ; # 0).

Note that in absence of surface tension, and for a two-phase system, ) . (M . ensures My ; = —M; 4 (equal and opposite force of one
phase against the other), whereas for a general multiphase flow including surface tension, > x> ..M, . = V(o).
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Depending on the nature of the system ¢, ; may adopt a different form (Zhang & Prosperetti 1997; Drew & Passman 1999; Bercovici
et al. 2001; Bercovici & Michaut 2010). For viscous flows involving melt percolation through a permeable matrix, ¢ ; is related to the
fluid viscosity, s, and matrix permeability, k,, such that ¢ ; ~ u/k,. Likewise, when dealing with turbulent flows ¢ ; depends on eddy
velocities and phase densities. General estimates of ¢ ; do not exist, and its definition should always be related to the particular system under
consideration.

As for the interfacial pressure, P,,, it is defined as an w-weighted average of the coexisting pressures at the interface,

l—wk
P= s iy 38

which is the natural extension of the interface pressure in (Bercovici & Ricard 2003) for multiphase systems. The behaviour of P, can be
understood by rewriting the pressure jump between two phases, & and j, as the difference between the pressure jump across the k-selvedge
layer and that across j, such that AP ; = (P — P,) — (P; — P,). For a three dynamic phase system (k, j, and / in Fig. 3), with p; > u; >
all the surface effects should be embedded in the k phase, since w; = 1 and w; = w; = 0. Therefore, the entire pressure drop across the
interface delimiting phase £ is accounted for by the k-selvedge layer, that is, controlled by the first term, P, — P,,. It is clear that for this case,
P, = 0.5(P; + P;), and hence P, = P; = P, as P; = P,. Furthermore, in absence of gravity and when pressures are uniform and equal, the
multiphase system should remain motionless even if V¢, # 0. This means that when VP, = 0 and P = Py, the force balance in eq. (18) should
read PV — > . .My . = 0if Avy; = 7, = 0 is to be zero. Indeed, eq. (37) verifies the equilibrium condition, as P,, = P and consequently
Avi; = 1) =0, since ). .My . = PV¢; by definition.

2.6.3 Surface energy

As shown in eq. (35) the energy contribution from all existing interfaces collapses into an averaged surface energy ¢, whose thermodynamic
evolution could be modelled via appropriate conservation equations and their respective interaction terms. However, for the purposes of this
study, the energy balance in eqs (22) and (23) is solved for the mixture system, that is, adding contributions from individual phases (internal
energies) and interfaces (surface energies) into the total energy budget. Despite the simple form of eqs (22) and (23), there are several implicit
assumptions in its derivation that need further discussion.

First, we account for the interfacial surface energy in terms of the volumetric energy density as {«, where ¢ refers to the total surface
energy per unit area. This is obtained adding all energy anomalies from every selvedge layer of the system (eq. 35). Second, we assume that
the interfacial surface energy is transported by the effective velocity of the interface, defined as

Vo = Z WiV (39)
©

which reflects the extent to which the interface is advected by each of the dynamic phases. The total bulk transport in eq. (22) as V - (¢av,,)
is thus controlled by the w;-weighted average velocity in eq. (39). In addition, the rate of surface work in eq. (22), defined as V - (cav,,), is
controlled by the averaged interface velocity in eq. (39).

Thus, with the previous considerations, the conservation equation for the averaged interfacial energy reads

85—“ FV - (Cavy) — V- (oav,) =0 (40)

which we assume equivalent to the sum of all the energy transfer rates across interfaces, > > . . «Ej. ..

2.7 Rheology

In order to obtain a closed MPMCRT formulation we need to supplement our set of conservation equations and interaction terms with
constitutive laws defining the rheological behaviour of the multiphase system. In particular, we need to relate the averaged phase stress tensor
o, to averaged phase velocities v, and pressures P;. Since our intention is to formulate a general scheme that can be applied to a large number
of geodynamic problems, we need to deal with the three main constitutive laws governing the deformation of Earth materials, namely elastic,
plastic and viscous. Which of these three rheologies dominates the bulk deformation of the multiphase system will depend not only on the
nature and abundance of the actual phases (and their interactions) but also on the local P—T conditions and spatial-temporal time scales of the
process of interest.

Plastic behaviour is implemented via the ‘effective viscosity’ approach, which has been described and validated in previous works (e.g.
Moresi et al. 2003; Kaus 2010; Keller ef al. 2013); in particular, we follow exactly the formulation in Keller ez al. (2013). Therefore, we
focus the following discussion on the implementation of the visco-elastic rheology. A local visco-elastic rheology is first introduced, based
on individual viscous and elastic constitutive laws (Section 2.7.1). This constitutive law is then ensemble-averaged in order to obtain the final
individual deviatoric and volumetric rheologies (Sections 2.7.2 and 2.7.3).

2.7.1 Local visco-elastic constitutive law

The individual viscous and elastic constitutive laws (hereafter indicated with subindices v and e, respectively) are written in Table 2 in rate
form for the case of isotropic materials.
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Table 2. Viscous (v) and elastic (e) constitutive laws and their decomposi-
tion into volumetric (o°) and deviatoric parts (7). &' refers to the deviatoric
strain rate.

Newtonian isotropic viscous rheology Linear elastic rheology
o, =—P - -Id+&tr(éy) - Id 4 2ué), G, = Mr(é.)-1d+2Gé,
o) =(—P+E&tr(éy)) - 1d 6, =Ktr(é.)-1d

Ty = 2ué, T, =2Gé,

Here, P is the so-called thermodynamic or equilibrium pressure, & = % (Vv +[vv]” ) the strain-rate, & the bulk or volumetric viscosity,
w the shear viscosity, K = A 4+ 2/3G the bulk modulus, G the shear or rigidity modulus and A is the first Lamé constant (cf. Batchelor 2000;
Schlichting & Gersten 2003; Bower 2009). Note that with the previous definition of strain-rate, tr (¢) = V - v. In addition, the mechanical
pressure is defined as P = — "(3—"), which is related to the thermodynamic pressure via P — P 4+ £V - v = 0 . Consequently, the mechanical
pressure P and the thermodynamic pressure P are not equivalent unless £V - v = 0, which is the case for incompressible media.

We use a Maxwell model to combine viscous and elastic rheologies into one local visco-elastic constitutive relation. The deviatoric and

volumetric components of the combined visco-elastic constitutive law read, respectively

o/ — L + Lf
2u - 2G
. 1 Lo
tr(é) = E(P+3tr(a))+ Etr(a) 41
which implicitly means that 0 =0, = 0, and é = é, + é,. We model 7 (objective time derivative of T) with the Jaumann stress rate,
=21 — Wt +1W, where 27 is the material derivative (stress tensor translation), and W = 1 (Vv —[Vv]") is the vorticity tensor

(stress tensor rotation). Although this definition of objective stress derivative is neither the only one nor the most general one, it is the
simplest to implement and its validity in geodynamic contexts (where elastic strains and the associated energy dissipation are always small
compared to plastic strains) has been demonstrated in a number of previous studies (e.g. Muhlhaus & Regenauer-Lieb 2005; Beuchert &
Podladchikov 2010); therefore we do not further discuss it here.

2.7.2 Averaged Visco-elasto-plastic deviatoric rheology

Proceeding as before, we condition the averaged visco-elastic deviatoric constitutive law to the presence of single dynamic phase & by using
X and the ensemble average operator; this yields

_ T + 1
C 2w 2Gy

-/
&)

T (42)

where u; and G; are assumed constants at every realization of the ensemble, 7, is the averaged deviatoric stress tensor (see Appendix A3), T,
is the averaged objective Jaumann derivative and &}, is the averaged deviatoric strain-rate tensor. The latter can be written as (Appendix A3)

1 2
&, = 3 (ka +[Vv]" - 5v . V;Jd) . (43)
We define the averaged Jaumann derivative in eq. (42) as
. Dy
Tke= Tk Wit + 1, Wi (44)
The averaged vorticity tensor is defined as a stress tensor average, W, = O;fk?:') , which we approximate here as W, ~ % (Vvk -V [vk]T).

Eq. (44) is simply the standard Jaumann derivative in terms of averaged values and has been obtained assuming %rk = i(% XkT) &
é % (xxT), and therefore setting the second term in eq. (A11) to zero. This implies that velocity fluctuations are negligible.

We discretize the time derivative in eq. (42) with an implicit-explicit backward finite-difference scheme. Thus, we have

A0
A Ty — Ty
= —F 45
Tk At (45)
where the explicit part reads
D
2 = D—I;rgAt — (WiT) + 7)WY) Ar. (46)

Note that %2 accounts for the advection (first term on the right-hand side of eq. (46)) and rotation (second term on the right-hand side of
eq. 46) of the deviatoric stress tensor from the previous time step (denoted with superindex ). As explained in Section 4.1 and Appendix B2,
the stress advection and rotation (eq. 46) is performed by storing the stresses T on Lagrangian particles, which are advected with their
corresponding averaged velocity fields.
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After some algebra, the visco-elastic rheology for the deviatoric stress can be written as,

2 Y 1 .0
Tk = 7 & T Gint ke 47)
w T Gr At 1+ #t

ek

As mentioned before, plastic yielding is included in eq. (47) via the effective viscosity approach (Moresi ef al. 2003; Kaus 2010; Keller
et al. 2013), where the viscosity in eq. (47) is iteratively corrected to keep the local stresses on the yield surface. This simple procedure
enables us to rewrite eq. (47) in terms of effective viscosities u¢T. Doing so, the final visco-elasto-plastic shear constitutive law for each of
the dynamic phases reads

eff ./ 720
T =28, + X7 3, (43)
with
y 7.0
T — Xk Tkt y
Y Tk =T}
off 28y
o=
1 ¥
ﬁ Tigr < Tk
Wk Gr At
Xi = S
k= .
1+ G At

Mk

./ ./ o . . . . . . . . . . . .
where &, ;, = /%ek’/_eki/ is the second invariant of deviatoric strain rates (Einstein’s summation convention applies), 12‘ ;; 1is the second

invariant of advected deviatoric stresses of the previous time step, and ; is the scalar yield shear stress. The use of the effective viscosity
approach in eq. (48) enables us to keep the same form of the visco-elastic constitutive law as in eq. (47), where plastic yielding is captured by
limiting the values of stresses according to a prescribed failure envelope for the system under consideration. Furthermore, when local averaged
deviatoric stresses remain below the plastic yield criterion, 7, ;; < 77, the effective viscosity /L;ﬁc remains unchanged and the visco-elastic
constitutive law in eq. (47) is recovered from eq. (48).

2.7.3 Averaged visco-elasto-plastic volumetric rheology

We now present an averaged constitutive law relating volumetric strain-rates and volumetic stresses at the interface. On the one hand, this
constrains the difference in mechanical pressure for every pair of coexisting dynamic phases, APy ;; on the other, it provides closure to the
whole MPMCRT set of equations. This is achieved by combining averaged individual volumetric constitutive laws, under material invariance
requirements. Again, we isolate the volumetric phase contribution of eq. (41), including surface tension, and apply ensemble averaging to
obtain

P + w0 1 1 D

W4 — — (P + axoicp) (49)

cV V= —
o A &7 X, D1

da
where K is the average bulk modulus and & = 5;\,% is the volumetric viscosity controlling the averaged viscous volumetric
compaction or expansion of the dynamic phase. This volumetrié:%iscosity is dependent on both mechanic and thermodynamic pressures, the
bulk viscosity and the surface tension. In this way, the thermodynamic pressure in eq. (41) is ‘absorbed’ into the volumetric viscosity, which
greatly simplifies the resulting volumetric constitutive law, as otherwise an additional equation to constrain the thermodynamic pressure
would be required. Note that in the absence of surface tension, and when both pressures are equivalent, the volumetric viscosity is & = +oo.
In this particular case, elastic stresses provide the resistance to isotropic compression. The left-hand side of eq. (49) refers to the averaged
volumetric deformation, which can be inferred from the trace of the averaged strain-rate tensor in eq. (A15), since tr (é;) = W =V v
In addition, tr (o) = —3 P being a scalar, the objective derivative in the right-hand-side of eq. (49) takes the form of a material derivative
"gﬁ = D% "(3—") = —D%P. The same reasoning applies for the surface tension. As shown in Section 2.7.2 for the deviatoric stress tensor, we
estimate the averaged material derivative of pressure as the material derivative of the averaged pressure, bearing in mind the potential error
associated with this assumption.

In order to constrain the pressure jump between phases we need to compare individual volumetric constitutive laws for two dynamic
phases k and j at the interface. As mentioned in Section 2.6, the contribution to the pressure difference is not evenly partitioned between the
dynamic phases, since the partitioning of the pressure jump is also closely related to the physical properties (i.e. the molecular bond strength
and viscosity) of the dynamic phases. As these properties vary among the coexisting phases, the pressure jump cannot be uniformly divided
over the mixture (simply weighted with ¢;). Following these considerations and in close analogy with Section 2.6, we weight eq. (49) with the
surface energy partitioning coefficient w; and compare pairs of single volumetric constitutive laws. This procedure results in the following

frame invariant visco-elastic constitutive law for the pressure difference between two (k and j) dynamic phases,

AP +©,, 1 D,
WV Vi —w;¢9;V - v; = —% XK. Dr (APk,j + ®k,j) (50)
J J
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g
w;&] +wk5;’
compaction resistance (viscous and elastic, respectively), and ®; ; = o (wy ddm —w; d“ ) refers to the amount of surface tension held by

KiK;

where & ; = C; ;KoK

and K; ; = Cg are both material invariant constants containing information on average volumetric

both dynamic phases. C; and Cy are first order dimensionless constants accountmg for different interface geometrles (Sramek et al. 2007)

Note that for a simple two-phase system @ ; = = o(w & dor T@iG du) = @ d ¢ s
controlling the pressure drop between two coexisting phases, where the left-hand-side represents the Volumetrlc deformation caused by the
out-of-equilibrium pressure differences in the right-hand side, including phase change effects.

Following the same strategy as in the previous section, we include plasticity through the effective viscosity approach. Thus, the final

visco-elasto-plastic volumetric constitutive law for pressure difference, APy ;, reads,
AP+ 6, = —s,f_fjf. (V- Vi — V- v;) + X,(“{"[AP,?M/. (51)
with

AP,f:j + O, — )(k’_jjAP,gj

AP, = AP},
off iV Vi — @;9,;V - v ' '
gk.j = 1 ,
R AP < AP,
k) Ky jAt
1
P S —
Xkj = 1+ K j A

&k.j

where AP}, ; is the yielding pressure difference condition, and AP,? i =(AP; + O ,)O is the advected pressure difference including surface
tension effects. Eq. (51) provides a mean to close the system of equations, provided S Cand x[ ;- We could either (i) experimentally constraint
these values, or (if) come up with models based on other grounds (as in Bercovici et al (2001)). In particular, this work proposes an explicit
model for é " based on &, which are related to &; (bulk viscosity). The numerical resolution of the nonlinear eq. (51) is further discussed in
Section 4.1.

Previous works on multiphase dynamics proposed different constraints for the pressure difference between phases. For instance, McKenzie
(1984) employed a bulk viscosity dependent constitutive law for compaction stresses applied to the limiting case of two-phase flows (solid (s)
and fluid(f)) with 1, >> us. Alternatively, Fowler (1985) and Scott & Stevenson (1986) explicitly related compaction pressures to a difference
between solid and fluid pressures throughout a porosity-dependent bulk viscosity. For small porosity values, all three formulations become
equivalent (Ryan 1990). On the other hand, Bercovici et al. (2001) and Bercovici & Ricard (2003) obtained a material-invariant two-phase
formulation with surface tension based on micromechanical models, where no explicit definition for the bulk viscosity was made. Later,
Sramek et al. (2007) provided additional thermodynamic rigour to Bercovici and Ricard’s material-invariant theory. More recently, Keller
et al. (2013) formulated a visco-elasto-plastic compaction rheology based on a Maxwell body analogue for a two-phase (melt-solid) system.
The present work, however, combines material-invariant principles and ensemble averaging procedures in order to constrain Maxwell-type
visco-elasto-plastic rheologies for a general multiphase system. Thus, our volumetric constitutive law differs from the above-mentioned works
in several ways. First, unlike McKenzie’s (1984) and Keller’s et al. (2013), our formulation is material-invariant, and thus it is not restricted
to two-phase systems with ;> us. Second, unlike Bercovici et al. (2001), the bulk viscosity for each dynamic phase naturally arises in eq.
(50) from the explicit assumption of a Newtonian isotropic viscous rheology. Third, our model is fully visco-elasto-plastic. Correspondence
between our formulation and previous works is, however, exact under certain assumptions. For the limiting case of two-phase viscous flows
with p1; > s and without surface tension, the compaction condition from McKenzie (1984) reads £V - v, = — AP, ; where £ is the bulk
viscosity. Under the same assumptions, our model predicts C; §XV OV vy =—AP s (as &, =C; EESV). Therefore, allowing for w; — 0 as
W/ ks — 0 exactly recovers McKenzie’s (1984) theory assuming that § = C¢£/ ¢,. Under the same assumptions, Bercovici et al. (2001)
relation becomes %V - vy = —AP; s where Cj is a first order constant, which is also in agreement with our formulation assuming that

& = (" ”‘ . This result suggests that in general & — oo (and thus & ; — o0) when ¢, — 0, which avoids non-physical results (e.g.
compress10n of an incompressible solid, see Ricard ef al. 2001). Indeed, &/ — oo in our formulation since P, — P; = 0 for single phase

incompressible media as shown in Section 2.7.1. Lastly, in the absence of motion and when two dynamic phases are considered, eq. (50)
recovers Laplace’s surface tension equilibrium condition.

3 THERMODYNAMIC MODEL

The coupling among the thermo-mechanical-chemical system of equations is formally achieved by means of a thermodynamic model under
the assumption of local thermodynamic equilibrium (we discuss the actual meaning of ‘local’ in Section 6). Therefore, the main variables
(P, Vi, T, ), physical properties (e.g. pi, heat capacity ¢;), phase abundances ¢, and closure terms (e.g. I'}’ ;) are all related by fundamental
thermodynamic rules. In addition to guaranteeing a thermodynamically consistent coupling of the main field equations, the thermodynamic
model provides a wealth of information that can be used to compare the results of simulations with observed data (e.g. seismic velocities,
geochemical data, gravity data, etc.). For instance, complete mineralogical assemblages, thermodynamic phase properties, dynamic phase
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properties and bulk system properties in every and any part of the model can be retrieved from the thermodynamic model. This is achieved
by solving local Gibbs free-energy minimization problems ‘on the fly’ as needed by the simulation. Our approach is therefore identical to
that in Tirone et al. (2009).

The local minimization problem involves finding the amounts and compositions of the thermodynamic phases that minimize the Gibbs
free-energy of the (local) system, at constant P—7, subject to mass balance constrains among the thermodynamic phases and the bulk
composition of the system. This can be written as

i=np
Gyt = minimize E o;G'

i=1

subjectto b; = Aj;a;
and o >0 (52)

where np is the total number of phases coexisting in equilibrium, G’ the molar Gibbs energy of phase i, «; the molar amount of phase i, b; the
bulk composition vector, and Aj; is the coefficient matrix containing the equilibrium composition of each phase i (i.e. amount of j component
in the ith phase).

Following a conventional chemical thermodynamic formulation, the molar Gibbs free energy of a thermodynamic phase (i.e. phase

component) G' is given as the sum of three contributions: a mechanical mixture contribution G, , an ideal solution contribution G, and

a non-ideal or ‘excess’ contribution G, ..

Gi = Glinech + G{dea] + Gi!on—ideal (53)

where

G:nech = Z Xj G’/() (54)

Glyen = RT Y XiIn (X})" (55)
) T T Cp P

G',°=Ho+/ deT—T[SO+/ —dT]Jr/ VdP (56)
‘ To To T Po

where X} is the molar fraction of phase component j in phase i and G;.O is the molar free energy of pure component j in phase i. In eq. (55) n
is the crystallographic site multiplicity accounting for the mixing sites per formulae (see e.g. Spear (1995)). For the olivine case in Section 5
n=2.Ineq. (56), H) and S, are the molar enthalpy and entropy of pure phase component j at standard conditions of temperature and pressure
(normally 7, = 298 K and Py = 1 bar), Cp the heat capacity at constant pressure and V the molar volume. Heat capacity as a function of
temperature is typically tabulated as a polynomial (Holland & Powell 1998), whereas the volume has to be described using an equation of
state (EoS). The non-ideal term in eq. (53) takes different expressions depending on the model used to account for departures from ideality,
but it is generally modelled as either a polynomial or a power series of the mole fraction (e.g. Margules or Redlich—Kister models; c¢f. Holland
& Powell 2003; Ganguly 2009).

The thermodynamic information necessary to solve the minimization problem in eq. (52) for j-component systems can be extracted from
internally consistent thermodynamic databases (e.g. Berman 1988; Ghiorso & Sack 1995; Holland & Powell 1998). The actual optimization
method used to find the minimum of the system’s Gibbs free energy is discussed in the next section.

4 NUMERICAL/IMPLEMENTATION OVERVIEW

4.1 Mechanical problem

The mechanical problem is solved in order to obtain velocities v and pressures Py for each dynamic phase. We use the mixed finite-element
formulation to solve the coupled system formed by an individual, quasi-stationary, Stokes-type momentum eq. (18) for each dynamic
phase, together with a total mass conservation equation (eq. 14) and k£ — 1 pressure-difference equations (eq. 51). Therefore, for a general
D-dimensional N-phase mechanical problem, we have a total of D x N 4+ 1 + (N — 1) equations (N momentum equations for each D-
dimension, a single mass conservation equation and N — 1 pressure difference equations) for N + D x N unknowns (pressures and D velocity
components for each phase).

The solvability of the system depends on a proper choice of finite-element spaces for the velocity and pressure interpolation, due to the
saddle-point nature of the variational problem (Donea & Huerta 2003). We use an extended Taylor—-Hood Q2-(Q1+Q0) element (continuous
quadratic velocity, discontinuous linear pressure), which is proven to satisfy the LBB condition (Arndt 2013) and minimize shear locking in
elasticity problems (see Appendix C).

The nonlinearities arising from the effective viscosity approach and the stress dependent variables are solved through an inner fixed-
point iteration loop (Zienkiewicz & Taylor 2000) assuming that physical properties and mass-transfer rates remain constants within this
inner loop. The advection and rotation of stresses is dealt with passive markers, and the stresses are recovered using Global Smoothing
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(Hinton & Campbell 1974) (other methods such as the Superconvergent Patch Recovery method (Zienkiewicz & Zhu 1992) have also been
implemented).

The reader is referred to Appendix B for further details on the numerical implementation of the mechanical problem, including FE
discretization and the particle-based stress treatment.

4.2 Thermal problem

The thermal problem stated in eq. (23) requires a discretization in space and time in order to obtain the temperature at every point in time and
space. Given the presence of sharp gradients and the need to advect them over many time steps, an accurate and stable advection-diffusion
algorithm is required to avoid numerical oscillations or excessive numerical diffusion. Here we use the particle-based Lagrangian—Eulerian
formulation of Oliveira ef al. (2016), which combines a Lagrangian formulation for the advective part and an Eulerian-based heat source
method for the diffusion and heat sources. This method employs a fixed structured quadrilateral finite-element Eulerian grid and a single set
of Lagrangian particles for the temperature advection. We use linear quadrilateral elements together with an implicit second order Crank—
Nicolson time discretization for the Eulerian approach, whereas the Lagrangian advection is solved using a fourth-order Runge—Kutta scheme
(RK4). We have also designed an effective interpolation scheme to transfer temperature information from nodes to particles and back at
every time step. Oliveira et al. (2016) showed that the method is high-order, accurate, oscillation-free and applicable to a wide range of fully
coupled advection-diffusion-reaction problems (see Appendix C).

4.3 Reactive transport

We solve eq. (29) in order to track the evolution of the bulk chemistry of our system. Here we use the same Lagrangian—Eulerian numerical
method as for the thermal problem (Oliveira ef al. 2016). The chemistry (in weight percent) is defined in a single moving set of particles,
which updates its values along the trajectory of the particles via interpolation of the divergence computed at the nodes of the grid. However,
unlike temperature, chemical mass is a conserved quantity and therefore conservation needs to be ensured in time and space. Our numerical
treatment of the right-hand side of eq. (29) at the particles verifies that }_,c? = 1 over all the particles and at every time step (see Section 2.5
and Oliveira et al. (2016)).

4.4 Thermodynamic solver

Since eq. (53) is a nonlinear function of composition, searching for the absolute minimum Gibbs free energy of the system can
be challenging and subject to convergence problems. Here we overcome such problems by adopting the ‘pseudocompound strategy’
(Connolly & Kerrick 1987; Connolly 2005), where the nonlinear chemical potential is approximated as a series of stoichiometric (i.e.
fixed composition) pseudocompounds; this transforms the nonlinear problem into a linear one that can be solved by efficient and robust linear
programming techniques (e.g. Simplex algorithm). In this way, the solution is represented by a linear combination of pseudocompounds
weighted by their respective mass fractions (more details in Connolly & Kerrick (1987)). Although the quality of the solution and the time
that it takes to solve the minimization problem depend strongly on the number of pseudocompounds used to discretize the compositional
space, efficient adaptive strategies are available (Connolly 2009).

Since thermodynamic information is required by FEM computations at Gaussian points, it is desirable to solve the minimization
problem at the integration points. This implies that, for a simple 100 x 100 element 2-D problem with a 2 x 2 quadrature, a total of 4000
linear programming minimizations per iteration in a single time step need to be computed. However, minimization problems are perfectly
parallelizable, rendering the procedure practical when cluster-computing is available. Moreover, we note that in many problems of geodynamic
interest, only a reduced portion of the numerical domain experiences dynamic phase changes (e.g. melting), whereas the rest of the domain
stays in a ‘single phase’ state. In this case, we can solve minimization problems in those regions where dynamic phases interact and use a static
approach (i.e. pre-computed properties) elsewhere in the domain. Such a combination of dynamic and static approaches can significantly
reduce the computation time associated with the minimization problem, especially when tensor-rank decompositions are used for the static
approach (Afonso et al. 2015).

Besides basic thermodynamic information on solution (or activity) models and solution end-members, the input for the minimization
problem are pressure, temperature and bulk composition. Given our assumption of thermal equilibrium, the input temperature coming from
the solution of the thermal problem is well defined. Pressure, on the other hand, is more problematic since in principle different dynamic phases
can experience different pressures at equilibrium and therefore the use of a single pressure in the thermodynamic problem is inconsistent.
However, for the purposes of this study, the difference in pressure between phases in local equilibrium can be considered small (identical if
there is no surface tension) compared to the absolute pressures. We therefore use the average of the mechanical pressures, P = ), ¢y Py, as
a representative total pressure in solving the minimization problem. A different approach, where dynamic phases are not considered to be in
equilibrium with each other, is discussed in Section 6.1.
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Figure 4. Numerical scheme workflow. Equations are referenced as in the text (in brackets).

4.5 Coupling scheme

The four problems described above are highly coupled via, for example, advective terms in the energy and reactive transport equations, energy
dissipation terms as functions of velocity, and the P—T-composition-dependent physical properties. More importantly, both the mechanical
and thermal problems involve closure terms, which are outputs of the thermodynamic solver. The coupling scheme used in this study is
outlined below for a single time step

i) Retrieve initial set up from the previous time step z. This includes velocities v}, pressures P, temperature 7", chemical composition
p p P o P k p p
¢", phase abundances ¢;, physical properties ®; and mass-transfer rates (I'";)".
(i) Assume velocities vj' = v/, pressures P{*' = P}', properties ®; ™' = ®! and mass-transfer rates (I'}! )"t = 0 in order to start the
nonlinear iterations (Fig. 4).

(a) Solve the thermal problem and obtain 7"*!.

(b) Solve the reactive transport problem and obtain c”“.

(c) Obtain new properties d>”“ and closure terms Ty, "1 from the thermodynamic solver using 7" * ! and ¢

(d) Solve the mechanical problem for v ™' and P;'*'. Th1s requires inner iterations to accommodate stresses (only needed if plasticity is
used).

(e) Go to step (ii)(a) if convergence of velocities and temperatures is not achieved.

n+1

(iii) Check time and go to (i) for the next time step.

5 NUMERICAL EXAMPLES

In this section, we present some simple, yet illustrative, numerical examples that highlight some of the capabilities of our numerical scheme for
general cases of partial melting. The first example illustrates some differences that arise from incorporating a thermodynamically consistent
approach into a two-phase model relative to a case where no thermodynamic consistency is enforced. The second example explores the
behaviour of a thermally driven upwelling experiencing partial decompression melting. To keep the analysis tractable and focus on the major
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Figure 5. Phase equilibria diagram for a simple olivine binary solution. Blue and red lines represent the solidus and liquidus, respectively. Numbers in phase

diagram correspond as follows: (1) Initially everything is solid with #Mg = 0.5. (2) First melt is formed as 7' > 74. To determine the composition of both solid

and fluid phases, move horizontally across the diagram to the solidus and liquidus lines, respectively. As the temperature increases the composition of the solid
and fluid phases migrate up the solidus and liquidus lines (decreasing iron content). (3) If 7 > T everything is fluid with #Mg = 0.5.

features of the model, we restrict ourselves to the illustrative case of systems made up entirely of olivine (i.e. a single solid solution with two
end-members Mg,Si0,4 and Fe,SiO,; the melt phase has the same end-members). Thermodynamic data comes from the internally consistent
database of Berman (1988). A more realistic and thorough analysis, including an extended thermodynamic database, will be presented in a
forthcoming publication. A number of numerical benchmarks use to validate our numerical scheme are presented in Appendix C.

5.1 Melt segregation from host matrix

This experiment explores the effect of various parameters on the extraction of melt from the host matrix. All the models are run in a 600 km
wide and 400 km deep rectangular box discretized with 241 x 161 nodes, respectively. The initial background composition is spatially
homogeneous with equal molar amounts of FeO and MgO (i.e. olivine #Mg = 0.5). The temperature structure is shown in Fig. 6(a). The
viscosities of both the solid and fluid phases are considered constant; p, = 10%° and ;= 1. Henceforth, & = %& will be invoked (in
agreement with Bercovici et al. 2001; Ricard et al. 2001). Densities of the solid and fluid phases are computed following thermodynamically
consistent and non-consistent schemes; the former retrieves densities from the thermodynamic model, whereas in the later the melt density
is forced to be 90 per cent that of the solid everywhere (Fig. 6¢; right), resulting in maximum Ap ~ 400 kg m~ (similar to the density
differences used in other studies, e.g. Sparks & Parmentier (1991); Keller ef al. (2013)). Determining a priori density differences (both spatial
and temporal) for the non-consistent scheme is challenging. By comparing both schemes, however, we attempt to show how potential errors
in the computed dynamics of the system can be avoided with a thermodynamically consistent retrieval of phase densities. Results for a single
time step are shown in Figs 6(d)—(f) and 7 and summarized in Table 3. Velocity vectors in Figs 6 and 7 are normalized by the local maximum
velocity, whereas those shown in Table 3 represent absolute magnitudes.

Figs 6(a, right), (b) and (c, right) show, respectively, the thermodynamically consistent melt content, the solid’s density and the density
difference between solid and fluid phases that results from the imposed 7-P-composition conditions. Note that the background pressure field
is gravitational, and since it depends on density, it needs to be computed iteratively in order to obtain a consistent initial configuration. As
expected, melt is more abundant in regions where the temperature is higher. The olivine phase diagram (Fig. 5) predicts that the solid phase
becomes progressively more depleted in FeO as melting proceeds, which contributes to lower the density of the solid in regions where melt is
present (Fig. 6b). Despite its higher relative iron content (Fig. 5), the melt remains lighter than the surrounding solid (Fig. 6c; left) . However,
density differences become smaller in regions of higher melt content, as the solid phase becomes more depleted in FeO (i.e. lighter) whereas
the opposite occurs in the melt phase.

Figs 6(d)—(f) show pressure differences (P, — Py) for both consistent (left) and non-consistent (right) schemes; normalized melt extraction
velocity vectors for different values of the interaction coefficient ¢ are also plotted. Since melt extraction by percolation is affected (among
other factors, see eq. 18) by the density contrast between solid and fluid phases, significant differences in the dynamics of the system arise
when comparing the consistent and non-consistent schemes. We observe pressure differences up to one order of magnitude higher for the
non-consistent scheme. Due to the higher density difference in this case, the fluid experiences a stronger overpressure in the upper region of
the melt zone in comparison to the thermodynamically consistent scheme. This can cause up to a factor of 4 difference in relative velocities
(rows 5 and 6 in table 3) between the two schemes. We can also expect that discrepancies in melt extraction velocity will become larger as the
system evolves, mainly due to rheological weakening of the host matrix in overpressured zones (plastic tensile failure, Keller ez al. (2013)).

G202 1940}00 §Z UO Jasn ajuem | Jo Asioniun Aq 6€26021/SYE/L/Z | Z/o1o1e/IB/w0od dnoolwapeoe)/:sd)y woly papeojumod



Multiphase multicomponent reactive transport 367

Pressure Difference [Pa]
PrOblem Setup 4r6 Consistent 486 -487 Non-Const  4g7

Temperature Melt - @ (@ c=1E9 @

0.4

Density Solid ) | | c=1E10 ©

Density Difterence (© c=I1EIl ®
Consistent Non-Consistent \
:' _____ ': ‘{ ‘Q % \ ; .
:-' . v A t o

1 5, I vt 1 “ X I t t o

| R | L ! f ’ t ot
AR 4 sotadst f by

PET
[kg/m’]
o (N /00

Figure 6. Melt extraction from host matrix with and without a thermodynamically consistent scheme for a system made up of olivine with Mg# = 0.5. Panels
(a)—(c) display the problem setup, including (from top to bottom) temperature field, melt content, bulk density of solid phase and density difference (o5 — p7)
for both consistent and non-consistent cases in a 600 km wide and 400 km deep box. Panels (d)—~(f) compare pressure differences (AP = Py — Py) between
the consistent (left) and non-consistent (right) cases for increasing values (from top to bottom) of the interaction term (corresponding to decreasing values of

—V,

permeability); normalized melt extraction velocity vectors (vv"m =) are also shown. These results correspond to the zoomed area in panel (c).

ax

Furthermore, the lower (max. Ap &~ 70 kg m~>) and spatially non-uniform density difference predicted by the consistent scheme results in
significantly different fluid velocity fields (relative to the solid) within the partially molten region, especially for low values of the interaction
term c (i.e. high permeability; Fig. 6d).

The importance of the interaction term ¢ on melt migration has been reported in previous works (McKenzie 1984; Ni & Becker-
mann 1991) and it is confirmed here. We run several numerical experiments for increasing values of interaction coefficient (¢, , = {10°,
10'%, 10''}), which correspond to porosity-independent permeabilities of ky = {107°, 107'%, 10~!'}, respectively (i.e. exponential factor
of permeability n = 2, Bercovici et al. (2001)). Since cAv controls the viscous mechanical interaction between phases (eq. 37), we expect
smaller velocity differences for larger interaction coefficients. Not only the absolute velocity magnitudes of the melt and solid phases,
but also the direction of melt extraction velocities are affected by this constant (Fig. 6, right panels, and rows 1-4 in Table 3). As ex-
pected, lower values of ¢, / (i.e. higher permeability) lead to higher relative velocities, and thus a more efficient melt extraction mechanism.
On the contrary, higher values of ¢,  result in smaller relative displacements between both phases. This will be discussed further in the
next example.
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Figure 7. Surface tension effects on the solid velocity for the melt extraction problem in Fig. 6. Results are shown for the zoomed-in area in Fig. 6(c), and thus
are not represented in the complete domain. (a) Left: surface area density computed with @ = » = 0.5 (i in the text). Right: surface area density computed with
a=0.1and b = 0.9 (ii in the text). Their respective solid velocity vectors are also plotted in (a). (b) Left: difference in the solid’s vertical velocity (v,) between
the case i (here, panel a, left) and an identical simulation without surface tension (ref'in the text) as vi. — v;ef. Right: difference in v, between the cases #i and i
(here, panel (a) right and left) as v;’ - v;.
Table 3. Results from the melt extraction experiment for various case stud-
ies for the node with higher melt content.

c=10° =100 c¢=10"

Consistent 8,026E-9  8451E-9  8,937E-9
N-Consistent  3,203E-9  7,603E-9  1,305E-8
Consistent 1,844E-8  1,181E-8  9,575E-9

N-Consistent  6,282E-8 4,02E-8 2,063E-8
vy :| Consistent 0,5647 0,2844 0,06669

Abs. Solid [v7 ]
Abs. Fluid [vﬂ

. VU
Rel. Diff. [ L
L’f

N-Consistent 0,949 0,8109 0,3677

Lastly, Fig. 7 compares results from our thermodynamically consistent scheme with and without surface tension effects for the particular
case where ¢ = 10°. As discussed in Section 2.6, surface tension is related to the abundance and morphology of the interfaces via its surface
area density (eq. 32). For the particular definition given in eq. (32), surface tension can be modelled as a function of parameters «, a and
b. Although for illustrative purposes these parameters can be considered constants, they are actually related to the microstructure of the
two-phase assemblage (Bercovici et al. 2001; Boettinger ef al. 2002; Sun & Beckermann 2004) and therefore more realistic formulations
would be necessary when modelling actual processes. Fig. 7(a) shows the solid phase velocity vectors and surface area densities for two
cases: (i) g = 10°, @ = b = 0.5 (left) and (ii) ¢y = 10°, @ = 0.1, b = 0.9 (right). The former corresponds to a simple hexagonal tubular
network (Ricard et al. 2001, and references therein) whereas the latter is perhaps more representative of real silicate melts at low porosities
(e.g. Bercovici et al. 2001). At first glance, different surface tension configurations seem to have little or no effect on the dynamics of the
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system. However, a closer look at the solid velocities reveals some interesting features. Fig. 7(b) (left) compares the vertical velocities of
the solid phase between case (i) and an identical simulation without surface tension (reference model, ref). This figure shows an increase in
vertical velocities (blue colour) in zones where melt is overpressured (upper region of the melt zone) and a decrease in vertical velocities (red
colour) in the lower parts of the melt zone due to surface tension. This is a direct consequence of the effect of surface tension curvature, g—;,
on the pressure difference between the solid and fluid phases (eq. 51). Another way to see this is by considering the divergences of the solid
velocities, which is larger in the middle of the melt region when surface tension curvature effects are included. In other words, surface tension
has an effective expansive effect over the solid phase, which causes the above velocity differences (positive in the upper region, negative in
the lower region). This effect is more pronounced in the case (iii), as seen in Fig. 7(b) (right), where vertical velocity differences between (ii)
and (i) are shown.

5.2 Upwelling and melting driven by thermal instability

This example solves a transient two-phase (solid (s)-fluid (f)) multicomponent reactive transport problem for the simple 2-D case of a
viscous olivine solid solution with homogeneous initial composition. The experiment is run in a 300 x 200 km box (only half of the plume is
computed) discretized with 121 x 181 nodes and 540,000 randomly distributed Lagrangian markers (~25 particles per element). The main
model features are: (1) uniform initial bulk composition of Mg# = 0.5, (2) constant viscosities (11, = 10% ;= 1), (3) viscous interaction
coefficient ¢, = 1/ko, where ky = 10~"" Pa s is the permeability constant, (4) free-slip mechanical boundary condition at the left and top
boundaries; no-slip at the bottom and right boundaries, (5) fixed temperature at the bottom and top walls, and (6) initial temperature field with
a thermal anomaly in the bottom left corner given by,

T(x,y) = Trer + 100 [1 + cos (zmin{r(x, y); 1})]

2 2
B y
h =15
where r(x, y) \/<2x105> +<1><105>’

Tt = @@—nn Tiop,
Tiop = 1810,
Toor = 1900,
n=3x10. (57)

For the above initial conditions, the thermodynamic problem predicts that the numerical box is occupied entirely by solid olivine. The
initial temperature field, however, results in a lower density zone around the bottom left corner that triggers upward advection. As the thermal
plume enters lower pressure zones, it starts experiencing decompression melting (at ~7.6 Ma). Figs 8 and 9 display the thermo-chemical
evolution of the system at different times.

Thermodynamic consistency is apparent when comparing (a), (b), (c), (e) and (f) in Fig. 8. The difference in chemical composition
between solid and melt is perhaps better illustrated in (e) and (f), where the relative oxide composition (e.g. FeO, MgO and SiO,) of both
phases is depicted along the plume’s symmetry axis. Partial melting (b) causes a drop in the FeO content of the solid phase (e), which is
reflected in a higher Mg# number and an associated decrease in density (a). As expected for this binary system, we observe the opposite
behaviour in the melt phase (c and f). Despite the relative higher FeO content of the melt (f), Fig. 8(d) shows a positive density difference
ps — prin the entire region of partial melting, which results in a negative vertical buoyancy flux difference AB, = (p,v;) — (psvy). In other
words, the melt is initially lighter than the surrounding solid and therefore contributes positively to the upward velocity of the plume (D-left
panel).

As the plume reaches shallower depths (9 Ma), significant compositional variations in both solid and melt phases are observed (Figs 8g—1).
Both phases behave similarly: they are lighter in regions with higher temperature (head of the plume) and lower FeO content (i.e. higher
Mg#), and denser in regions of lower temperature (margins of the plume) and higher FeO content (i.e. lower Mg#). However, due to the lower
ambient pressures and the larger differentiation (mainly FeO partitioning) experienced by the phases, the melt now becomes denser than the
solid in the inner, hotter parts of the plume (J-red colour zones), whereas the solid remains denser in the outer regions (J-blue colour), where
temperatures and melt fractions are smaller. The maximum density difference is ~50 kg m—>. Despite the negative buoyancy of the melt in
the upper central part of the plume (8-J-right, upper part of the plume, in red), AB, (J) indicates that the melt phase still ascends at a faster
(although diminished) rate relative to the surrounding solid. This counter-intuitive behaviour is the result of an effective upward ‘push’ due to
a) the positive buoyancy of the melt phase below the high-density region, b) a ‘suction effect’ from the melt at the top of the plume, and the
lateral flow pattern within the plume head (Fig. 9¢ at 9.1 Ma), which counteracts the negative buoyancy of the fluid in the central upper part
of the plume. We note, however, that the velocity difference (v, — vy, not shown here) decreases in absolute value in the upper regions of the
plume (i.e. melt’s upward segregation slows down) as the density difference (o, — py, fig. 8 J-right) decreases (i.e. py > p;). In this example,
AB, is significantly larger (~an order of magnitude) than that in (d), resulting in an increasingly faster transport towards the surface and a
consequent increase in melt production.

Melting in our simulations occurs in response to changes in the three main thermodynamic variables, namely temperature, pressure and
composition. Computing melting by increasing temperature or decreasing pressure is standard practice in geodynamic simulations. Melting
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Figure 8. Snapshots of the thermal upwelling example for an olivine solid solution after 8 Ma (a—f) and 9 Ma (g—1). For clarity, areas of interest have been
zoomed-in. The zig-zag contours in the zoomed-in panels in (c) and (d) are plotting artefacts due to the way in which the fluid’s information is extracted from
the Eulerian mesh.

by changing the bulk composition of the system, on the other hand, is less common. In our simple olivine example, this occurs when the
FeO-rich melt is advected into a solid parcel with a smaller Mg# (more depleted) and reacts (equilibrates) with it, thus effectively producing
a metasomatic effect. This, in turn, can produce additional melting in the parcel, even without changing the temperature or pressure, as the
solidus of its new more fertile bulk composition is lower than that before metasomatism (Fig. 5). In reality, most steps in a simulation involve
simultaneous changes in temperature, pressure and composition coupled with different velocity fields for the different phases.

Figs 9(a)—(d) show snapshots of melt content and temperature field for the same simulation as in Fig. 8, but at times 0f 9.1, 9.3, 9.5 and
9.7 Ma, respectively. Details on the relative velocity field (computed as v, — v,) within the melt region are shown in Figs 9(e)—(h), including
the horizontal solid velocity component as a background colour map. As the melt fraction increases, the energetics and dynamics of the
two-phase system becomes progressively controlled by the fluid’s behaviour. In the sequence shown in Fig. 8, the plume begins to interact
with the rigid upper boundary, its vertical velocity begins to decrease, and a clear lateral deflection of the solid flow (i.e. horizontal spread
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Figure 9. Snapshots of the example in Fig. 8 after 9.1, 9.3, 9.5 and 9.7 Ma. Upper panels (a—d) illustrate melt content (left) and temperature field (right),
with fluid (left) and solid (right) velocity vectors. Each panel contains a schematic illustration of the location of the plume (black areas correspond to ¢ > 0),
where the zoomed in areas are highlighted (blue and red boxes). This schematic illustration is 150 km wide and 300 km deep. Bottom panels (e~h) show the
x-component of the solid velocity (as background colour) with melt extraction velocity vectors (Vs — vy) for the zoomed-in four snapshots in (a—d) (blue boxes).
Velocity vectors have been normalized with the maximum velocity in each panel.

of the plume head) is observed. The overpressured melt phase at the top of the plume, on the other hand, is expelled upwards and carries a
significant portion of the system’s heat content with it. At the same time, this melt metasomatizes the colder and less fertile material at the
top of the plume, triggering more melting. In particular, a ‘secondary plume’ is developed around 9.3 Ma at the top of the primary plume,
where the higher melt velocities and higher melting rates occur. This secondary plume increases in size over a short time period (c and d)
and generates a high melt-content zone (>70 per cent). Figs 9(e)—(h) show that when this secondary plume develops, melt is preferentially
focused towards its centre. This effect would be accentuated in a mid-ocean ridge environment and in simulations with porosity-weakening
viscous material and/or stress-dependent viscosities (e.g. Stevenson 1989; Kelemen et al. 1997; Holtzman et al. 2003a; Spiegelman 2003;
Katz et al. 2006; Katz 2008; Kohlstedt & Holtzman 2009, and references therein). At around 9.7 Ma, the chilled margins (melt solidifying)
of the secondary plume trigger internal small-scale convection cells (evident in the irregular margins in Fig. 9(d) and in the velocity vectors
in Fig. 9(h)).

We end this section by recalling that for small melt fractions, both phases are strongly coupled and it is the velocity of the solid phase
that dictates the energetics of the system, which ultimately (together with pressure and composition) controls whether melting/solidification
will occur. As the melt fraction increases, however, the phases become more uncoupled and the physical properties of both melt and residual
solid (and therefore the system as a whole) become progressively controlled by the composition and mechanical properties of the migrating
melt (Spiegelman 1993b)). Above the disagreggation threshold and in the dilute suspension regime all the dynamics and energetics of the
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system are controlled by the fluid phase (and thus, the two phases become, again, coupled). At these stages, Darcy-type formulations become
questionable, as the underlying assumptions are not valid anymore. For these cases, more general formulations where the momentum equation
for each phase is explicitly modelled (as in this study), together with appropriate interaction terms accounting for the specific physics of the
problem under consideration, would be required.

6 DISCUSSION

Although the framework presented in this work is general and can be used to model a wide range of processes, some of the assumptions/methods
used in the illustrative examples are rather simplistic and/or restrictive. In the following, we briefly discuss the implications of such choices
as well as different ways of implementing more realistic ones.

6.1 Local thermodynamic equilibrium

An important hypothesis used throughout this work is that of local thermodynamic equilibrium (LTE). However, different meanings can
be assigned to this hypothesis depending on the context. Strictly speaking, LTE is the fundamental assumption behind the classical theory
of irreversible thermodynamics, also known as Classical Irreversible Thermodynamics (CIT); it states that even in systems out of (global)
equilibrium, thermodynamic relations defined in equilibrium thermodynamics can be used locally and instantaneously (cf. Lebon et al. 2008).
Conceptually, the global system is split into ‘small’, local subsystems that are large enough to be considered independent macroscopic
thermodynamic subsystems, but sufficiently small that thermodynamic equilibrium is always realized (or close to being realized). For large-
scale systems that are not too far from equilibrium, CIT is known to be a good approximation and provides the theoretical support to the
classical transport equations of mass, energy and momentum, as well as their coupling terms (cf. Lebon et al. 2008; De Groot & Mazur 2013).
The framework presented in this work is therefore based on the principles of CIT.

A slightly different meaning can be given to the hypothesis of LTE when considering the actual numerical method to solve the transport
equations. We refer to this particular meaning as the ‘numerical’ LTE. In this case, not a conceptual but a real spatiotemporal discretization
needs to be adopted, which depends on the scales of interest for the problem at hand. The question therefore is what are the spatial and
temporal scales at which the system can reach equilibrium and how do they compare to the actual discretization scales used in solving the
transport problem? Simply put, numerical LTE in our finite-element context means that equilibrium (chemical, thermal, mechanical, etc.) is
assumed to be always achieved within a volume equal or smaller than that of the finite element in a time smaller than the time step used in
the simulation (e.g. Knapp 1989; Tirone ef al. 2009). Using standard values for thermal diffusivities, it can be shown that typical thermal
equilibrium scales are <100-200 m and <200-500 yr (e.g. Tirone ef al. 2009), which aligns well with the ‘typical’ discretizations used in
geodynamic modelling. As for the chemical re-equilibration, it is difficult to come up with a general value as it is not only dependent on
diffusion (and therefore grain size), but also on the particular kinetics of the reactions involved in the system (see Knapp (1989) or section 5
in Tirone ef al. (2009)). Therefore, whether the condition of local chemical equilibrium is effectively achieved should be analysed for each
particular case. Within this context, another advantage of using Lagrangian particles in our numerical formulation is that the local equilibrium
assumption can be assumed to occur in the particles instead of within a finite volume. This is a better, yet more expensive, approximation
provided the number of Lagrangian particles is enough to guarantee a good spatial coverage. However, if the kinetics of the processes of
interest are slow, a formal disequilibrium formulation would still be required.

The arguments above suggest that the numerical LTE assumption is appropriate, for example, in large-scale simulations of slow porous
flow. This assumption, however, may breakdown in the simulation of smaller scale or fast segregation processes (i.e. phases are said to be
‘decoupled’) for which the time-spatial scale for equilibrium is larger than the time-spatial scale of interest. Our framework can be readily
extended to deal with these cases, for example, by either adding separate energy and mass-diffusion equations (and interaction terms) for each
phase to the system of conservation equations, and/or by explicitly considering that different dynamic phases can be in relative disequilibrium.
In the latter case, we need to either compute (e.g. considering kinetics) or assume (e.g. as in fractional melting) how much of each phase can
equilibrate with the other and solve separate thermodynamic minimization problems for each phase. These modifications can be important for
the modelling of out-of-equilibrium thermochemical processes such as melt channelling (e.g. Spiegelman & Kelemen 2003), disequilibrium
melting (e.g. Iwamori 1993; Elliott & Spiegelman 2003), and kinetics-controlled processes in general. The details of such implementations
are outside the scope of this work and will be presented in a separate publication.

6.2 Darcy equation, momentum interaction term and interfaces

A common practice in two-phase flows is to choose the interaction coefficient ¢ in such a way that the momentum equation for the fluid phase
recovers Darcy’s law when s < i, and in absence of surface tension. The validity of Darcy’s law has been, however, challenged in recent
years, primarily based on theoretical works where thermodynamic properties are attained to interfaces (Hassanizadeh & Gray 1979b, 1993;
Gray & Hassanizadeh 1998; Joekar-Niasar ef al. 2010). Indeed, Darcy’s law was originally developed for simple 1-D steady-state isothermal
flow experiments concerning almost incompressible water in saturated homogenous isotropic rigid sandy soils. While these assumptions are
reasonable for single-phase flow, one may expect many other factors to affect the dynamics of MPMCRT systems. Despite acknowledging
that closure relations (i.e. interaction terms) are based on simple empirical information, we wonder about the convenience/correctness of
relying upon Darcy’s law as a valid criterion to obtain general expressions for ¢ in geodynamic contexts.
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Figure 10. Melt velocity using (upper panel) Taylor-Hood—Q2-Q1 elements, and (bottom panel) Taylor-Hood—Q2-(Q1+Q0) elements for the example
depicted in Fig. 6(d) (c = 10°). The melt fraction is depicted at the background for reference.

Work by Hassanizadeh and co-authors (Hassanizadeh & Gray 1993) circumvent this problem by deriving averaged mass, momentum and
energy balance equations not only for the dynamic phases but also for the interfaces, under the framework of rational thermodynamics and
volume averaging. Thus, a complete thermodynamic state of the interface is taken into account. In the present work, interfaces are assumed
massless, and therefore no additional mass and/or momentum conservation equations are solved for them. Instead, surface tension forces are
considered embedded into the dynamic phases, which are taken into account in the individual momentum equations (eq. 18). On the contrary,
the energetics of the interface, that is, surface energy density, is explicitly accounted for in the total energy balance eq. (23). Incorporating
a complete thermodynamic state of the interface into our formulation would require both ensemble averaged mass and momentum balance
equations for the interface, and an extended numerical scheme. In any case, any resulting system of equations and associated coupling terms
should be supported and validated by comprehensive experimental work. Given the progress made in experimental techniques over the 10 yr,
we anticipate that this will be the case in the next decade or so.

6.3 Numerical model

Here we briefly address some inherent numerical issues concerning the solution MPMCRT systems (see Oliveira ef al. (2016) and Appendix B
for complimentary numerical details).

The mechanical problem represents a major numerical challenge in the present MPMCRT approach. We chose to formulate the individual
momentum equations in terms of Cauchy stresses, and therefore constitutive relations are invoked only after obtaining the weak form (see
Appendix B). In principle, this approach is more fundamental and general than those in which a certain velocity—stress relation is assumed
beforehand (e.g. the velocity—pressure approach), as it is valid for any arbitrary constitutive relation. However, it is intrinsically less numerically
stable (Donea & Huerta 2003) and it may be challenging for some standard algorithms. In the current implementation, we solve the ‘monolitic’
linear system of governing equations using Matlab’s ‘backslash’ solver (2016 edition). Numerous tests indicated that this solver provides
satisfactory results. However, we anticipate that a carefully designed global iterative algorithm (e.g. UZAWA method Brezzi & Fortin 1991)
or a nested iterative method (Gresho & Sani 2000; Quarteroni & Valli 2008) would improve stability of the solution, specially if designed to
solve the momentum equations for each dynamic phase separately (and accommodating the interaction terms iteratively).

As mentioned above, the solvability of the system as well as local mass-conservation are guaranteed by the use of the augmented Taylor-
Hood (Q2-(Q1+Q0)) element. Results between different Taylor—Hood elements are compared in Fig. 10 (a—(Q2-Q1), b—(Q2-(Q1+Q0))).
Despite satisfying the LBB compatibility condition, the continuous description of pressure in (Q2-Q1) cannot ensure local mass conservation,
which generates unrealistic spurious oscillations on the velocity field (10-A). These instabilities are avoided with the use of (Q2-(Q1+Q0))
(10-B), without the need for further smoothing techniques (Arndt 2013). The improvement in the stability of the solution using (Q2-(Q1+Q0))
comes at the cost of increasing the degrees of freedom of the system (i.e. 1 additional DOF per element), which translates into an increase in
the computation time (up to a factor of ~1.5 for high-resolution experiments).

However, the evaluation of dynamic phase pathlines need oscillation-free continuous flow fields, otherwise coherent trajectories for the
dynamic phases cannot be computed. Also, smooth fluxes or secondary quantities derived from pressure and velocity fields (e.g. gradients
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and divergences of velocities) are needed to compute accurate visco-elasto-plastic stresses. We refer the reader to Appendix B2 for further
details on global smoothing and stresses’ computation.

7 CONCLUSIONS

We have presented a conceptual and numerical framework for solving multiphase multicomponent reactive transport (MPMCRT) problems
based on the theories of ensemble averaging and classic irreversible thermodynamics. In particular, we presented detailed derivations of (i)
the fundamental MPMCRT set of ensemble-averaged equations for materials with complex visco-elasto-platic rheologies, (ii) the coupling
among the thermo-mechanical-chemical system of equations by means of Gibbs-free energy minimization under the assumption of local
thermodynamic equilibrium, and (iii) a complete numerical scheme to obtain accurate and reliable solutions of the complete set of governing
equations. The framework is general and readily extendable to accommodate numerous processes of geodynamic relevance. Our approach
is based on the effective tracking of the most basic thermodynamic variables, namely internal energy and chemical composition (not with
proxies but actual chemical elements), coupled with a true multiphase formulation in which the different dynamic phases are modelled
with their own set of conservations equations and can be subject to different conditions of pressure and temperature. This approach opens
up the possibilities to model general non-equilibrium processes and to study the feedbacks between the chemical and thermomechanical
behaviours of natural systems (e.g. disequilibrium melting, metasomatism, strain localization via chemical reactions, etc.). The method may
be particularly useful for studying processes where the assumption of strong coupling between phases is not warranted (e.g. formation of
magma chambers, melt localization, volcanic eruptions). Also, the implementation of a chemical thermodynamics solver allows retrieving
whole sets of thermodynamically consistent physical and chemical properties that can be used to predict geophysical and/or geochemical
observables. This in turn allows to make an explicit connection to formal geophysical inverse theory and data-assimilation methods and opens
up new opportunities for integrated studies of deep processes combining numerical simulations and data inverse analysis (e.g. Baumann &
Kaus 2015; Afonso et al. 2016).

Two simple numerical examples of a two-phase system made up olivine (i.e. one solid solution) were presented to illustrate some of the
main concepts and capabilities of the presented method. We showed that the dynamics of a two-phase system using a thermodynamically
consistent scheme can be significantly different from those obtained using simpler parametrized (yet widely used) schemes. The main reason
for these differences is the chemical-thermomechanical nonlinear feedbacks that develop in a thermodynamically consistent scheme, but that
are absent in a parametrized approach. As in most nonlinear systems, these feedbacks are not easy to predict or parametrize in complex
MPMCRT simulations and their explicit treatment is one of the main strengths of thermodynamically consistent methods such as the one
presented here. We corroborated that the effects of surface tension on the macro-dynamics of the system is of second order (see also Ricard
et al. 2001). However, the inclusion of this effect may be critical for interpreting/modelling small-scale segregation processes (e.g. those
arising in laboratory experiments).

The numerical examples also highlighted the central role played by the interaction terms (i.e. interface processes) and the assumptions
behind their modelling. In addition to the well-documented effect of the momentum interaction term (i.e. the interaction coefficient c) on the
dynamics of the system, both mass and chemical-mass interaction terms (I'” and I'?, respectively) also play an important role. In particular,
they affect the dynamic behaviour of the system through, for example, solid—solid phase change reactions, mass exchange between dynamic
phases, melt formation/solidification, latent heat absorption/release, and variations in physical properties in general. These terms arise
naturally when averaging the phase conservation equations with explicit consideration of jump conditions. This is a critical part of MPMCRT
and our ability to develop realistic models for the key interaction terms will determine the success of MPMCRT in modelling real-world
scenarios. The form of these interaction terms must be justified based on mathematical, thermodynamic, and experimental grounds. For the
purposes of this work, we have employed relatively simple interaction terms, but more comprehensive/realistic forms should be worked out,
with support from laboratory experiments, depending on the nature of the system under consideration.

Given space limitations, we have not presented a detailed analysis of the mathematical behaviour of the individual equations (e.g.
instability development, porosity-waves, etc.), which has been studied in many previous works (e.g. Spiegelman 1993c; Aharonov et al. 1995;
Spiegelman et al. 2001; Connolly & Podladchikov 2007). We rather focused on the complete chemical-thermal-mechanical coupling of the
resulting full system of equations, which is a less understood topic. Similarly non-Newtonian viscosities, damage, strain localization, melt
shear bands and full disequilibrium implementations have not been addressed in this study. The predictions and implications of our modelling
approach for the understanding of these processes will be the focus of future studies.
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This appendix provides further details on the ensemble averaging technique presented in the main text, including schematic illustrations
and definitions of averaged properties, spatial and temporal derivatives of averaged variables and a complete description of the averaged
strain-rate tensor in MPMCRT scenarios. For an extended review on ensemble averaging and other averaging techniques we refer the reader
to (Drew 1971; Ishii 1975; Drew & Passman 1999; Bear & Bachmat 2012, and references therein).

A1 Basic definitions

For completeness, we first recover the definition of the ensemble average of a scalar, vectorial or tensorial quantity ®(x, #; 7). From Section 2.1,
we have

.1 .
(P (x,t;m)) = Hll)rrolo P ; D (x,t;m) (A1)

where 7 refers to a single realization, and x and ¢ are the usual space and time variables. Measurements of any quantity ® at a given point
in space and time of a MPMCRT system is a challenging task, since in general we may encounter various phases at that particular point
for different realizations. This is illustrated in Fig. Al(a), where several realizations of ¢ are shown in a 1-D space profile and for a fixed
time ¢. The measurement of a particular property coming from only one of the dynamic phases is achieved conditioning the property to the
presence of the dynamic phase under consideration. We condition the quantity @ in phase k& by multiplying it with the characteristic function,
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(a)

(b)

X, ® % %

X, =1 X, =1
) X
(c ]
X :Y | .
0
X

Figure Al. Graphic representation of the ensemble averaging of a generic property ®. (a) Set of realizations, or ensemble, of . (b) Conditioned measurements

of each of the realization to the presence of the dynamic phase &, x ;®. Note that each realization is multiplied by a different characteristic function x, since

the topology varies between realizations. (c¢) Intrinsic average of ®, & = % and the averaged phase fraction ¢ = ().

xx(X, t; ). The characteristic function is defined to be unity within the region/phase of interest and zero elsewhere for any realization

1 if dynamic phase k presentat(x, ¢; ),
Xk = ) . (A2)
0 otherwise
Consequently, x ;P represents the isolated phase property (®) of a single realization 7. This is schematically shown in Fig. A1(b). Furthermore,
the characteristic function evolves according to the so-called topological equation, which is obtained considering the temporal derivative of
the characteristic function

Xk
v Vx=0 (A3)
at
where v; is the velocity of the interface. Once ® has been isolated from its surroundings (Fig. Alb, x,®), we ensemble average it in order to

obtain a separate averaged description of the property ® inside a given dynamic phase & (Fig. Alc)
1
(@) = lim — 37 . (A4)
T

Since yx is zero everywhere except in regions where phase k exists, we can rewrite the sum in eq. (A4) in terms of realizations where
only phase £ is present (denoted by )

o
(@) = lim — 3 @
T
1
= lim 2 —Y o
T—>00 JT T} o

1
= lim — [}
bt 2
= ¢ Ps (AS)

where, ¢ = (xx) is the averaged phase fraction,

1 . . . .
i >, @ istheintrinsic phase average.

Intrinsic average or phase-weighted average values correspond to the ‘true’ phase averaged quantities of any property @, and are denoted

q)k = limnk —00

with subindex & (except for the averaged phase fraction ¢, and other mass-weighted variables, see below). A graphical representation of
both, the intrinsic average and average phase fraction, is given in Fig. A1(c). For the simple case of the density, & = p, the intrinsic phase
average of the density refers to the averaged density that the system would have if it was only comprised by that single phase. From eq. (A5)
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we define the intrinsic or phase-weighted average as,
(X P)
Ok

In the formulation developed here, however, we also introduce mass-weighted average quantities, such as the mass-weighted average

qu =

(A6)

velocity in eq. (12). Its definition naturally arises after ensemble averaging the local conservation equations (see Section 2.2), and is proven
to be useful when analysing different aspects of multiphase systems (i.e. momentum transport and/or reactive transport). The mass-weighted
average for a general property & is defined as

P
@, = Oup®) (A7)
Prpr
Note that we used the same notation (subindex k) to represent both the intrinsic and the mass-weighted averages (eqs A6 and A7). In the main

text, however, we will make clear which definition is being used.

Al.1 Fluctuating fields

In general, the ensemble-averaged velocity of a multiphase system is not the same as the complete (or true) velocity field due to the fluctuating
motion of the individual interfaces (e.g. due to turbulence). Therefore, analogous to the single-phase Reynolds decomposition, any variable
can be represented as its ensemble-averaged value plus its corresponding fluctuating field, <I>Z, as

D =D+ D,. (A8)

Using the previous relation we can further explore the ensemble average of the product between two different properties (i.e. 4 ®, 2®)
as,

" 00 0) = (i (i +10)) (P + P;))

= ()L @y + (XkA‘D;Bq)»

= 6" @ Py + (10 0, ) (A9)
where the ensemble average of the fluctuating fields is zero, (x d>;{') = 0. The last term above represents the correlation between the
fluctuating fields, which is, in general, non-zero. Thus, from eq. (A9) we conclude that the ensemble average of the product between two
different properties, such as velocity and internal energy, is not the simple product of their averaged values ({ ;vu) # ¢rViuy). The Reynolds
fluxes arising in the averaged energy equation in eq. (21) are, for instance, direct consequence of this result.
A2 Gauss and Leibniz averaging rules

Terms involving temporal and spatial derivatives of ® and x arise when local conservation equations are ensemble-averaged. In the following,
we summarize the main relations employed in this work, which can be found in Drew (1971), Drew & Passman (1999) and Bear & Bachmat
(2012).

These relations are equally valid for any type of average, and are known as the Gauss and Leibniz rules. They read, respectively, as

(V@) = (V) ®) — (Vi) = Vi f) — (PVxi)
(] o
ot ot ot ot ot

The last terms on the right-hand-side refer to the averaged influence of ® on the interface, and are closely related to the interaction

terms arising in our MPMCRT formulation. Therefore the interaction terms are not only conceptually appealing to model the influence of the
surrounding media on a given phase (i.e. Newton’s third law), but also rigorously justified and obtained through mathematical derivation.
Another useful expression is the average of a material derivative,

D D "
<E (X/cd>)> = Hi (@) + (v - V (e ®)) (ATD)

which clearly shows that, in general, the ensemble average of the material derivative is not the material derivative of the averaged value.
This result is of particular importance when ensemble averaging the objective time derivative of the stress tensor for elastic rheologies
(Section 2.7.2, eq. 44).

A3 Averaged strain-rate tensor

The deformation of a continuum is usually defined by the strain-rate tensor, &, which is function of the velocity gradients. For small
deformations it is defined as,

é= % (Vv+[vv]"). (A12)
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The averaged strain-rate tensor, &, is obtained from eq. (A12) following the standard averaging procedure. We first isolate the phase
contribution multiplying the strain-rate tensor with the characteristic function yx, and then proceed with the usual ensemble averaging as,

{(Xkp&) 1 T
— = — (GuPVV) + (epVVv)
dpx 2y PV F 00V )
1
- (Viwpv) + Viuov) " = (Us +U7))
2¢kﬂk
1
=3 (Voroevi + V[deowvil” — (Ux +U)))
¢k)0k
where v = (o) and Uy = (vVyp) (A1
D1k

where the average strain rate tensor corresponds to the mass-weighted averaged strain rate tensor and not the intrinsic phase average strain-rate
tensor. The justification is based on the following arguments. First, the mass-weighted averaged strain rate tensor aligns with the definition
of motion, and consequently deformation, in terms of the mass-weighted properties (see Section 2.2 for further discussion on the topic).
The averaged strain-rate tensor in eq. (A13), thus, defines the relative deformation of small volumes of mass associated to a single dynamic
phase (Fig. 2). An second, it enables us to keep consistency with the definition of velocity used throughout this work, since the resulting
average strain-rate tensor is an explicit function of mass-weighted average velocities. Indeed, the mass-weighted average definition of the
strain-rate tensor itself incorporates the density into relation (A13) (first line), which is used, after minor algebra, to describe the average
velocity as a mass-weighted average (third line). This greatly simplifies the formulation presented here, as otherwise, the deformation could
be expressed in terms of other averaged velocity quantities (i.e. intrinsic average velocities), which would inevitably require additional closure
relations, introducing yet more equations and unknowns.

As for the tensor Uy in eq. (A13), it contains information relating bulk velocities at the interface. Its evaluation requires proper modelling,
since the analytical solution of it is, to our knowledge, unknown. However, its form can be estimated from fundamental constraints (Bercovici
et al. 2001). For instance, U; needs to ensure that the deviatoric strain-rate tensor remains traceless after ensemble averaging the true
deviatoric strain-rate tensor. This characteristic is a must regardless the employed averaging technique (i.e. volume, time, ensemble), since
external isotropic forces over an incompressible mixture should not produce any expansion or extension, and only the pressures should
increase/decrease. In addition, the second law of thermodynamics states that the viscous energy dissipation is always positive, and thus,
the resulting deviatoric stress tensor must fulfil Vv, : 7, > 0. A possible, but by no means unique definition of U, satisfying the previous
constrains is given by,

Ui ~ (V1) Vi (Al4)
which yields the final expression for the averaged strain-rate tensor as,

1
&y = 3 (Vvi +[Vvil"). (A15)

The definition above is equivalent to Bercovici’s form in (Bercovici et al. 2001) section 4.2, and keeps analogy with the true strain rate
tensor definition in (A12), but with gradients of averaged velocities instead.

APPENDIX B: NUMERICAL DETAILS OF THE MECHANICAL MODEL

This appendix extends the numerical details introduced in 4.1, including the complete finite element discretization and its corresponding
matrix form, as well as, the stress recovery procedure. Further explanations on how to solve the energy, reactive transport and thermodynamic
problems can be found elsewhere (e.g. Connolly 2005; Oliveira et al. 2016), and thus are not included here.

B1 FEM discretization

The mechanical problem is a combination of N individual momentum equations (eq. (18), one for each dynamic phase), N — 1 pressure
difference type equations (eq. (51), one for each pair of coexisting dynamic phases), and a total mass balance equation (eq. 14), complemented
with proper boundary conditions. The strong form of the mechanical problem reads as,

V(geP)—V - (2¢ku,;“'é;{ + ¢ x;f‘;) = depibi + ) cezAviz + P,V + oV (o) in Q
z#k

Xk:Zr;ﬁz (i—i> in Q

z>k Pr Pj

Z V- (Vi)
i

AP+ 0 = =& (0xpiV - Vi — 0,6,V - v;) + x[ AP,
Vi = Vi, inI'p

no, =t in Iy (Bl)
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where velocities v, and pressures P, need to be determined. €2 refers to the domain, and I', and 'y are portions of the domain boundary
Q2 (I'pUI'y = 9€2) where Dirichlet and Neumann boundary conditions are respectively defined. As usual, we obtain the weak formulation
from eqs (B1), multiplying the Stokes equations by a velocity test function w € V and integrating them over the domain €2, where V = {w €
H' (Q) |w = 0onTp}. Similarly, we proceed with the pressure difference equations and the total mass conservation equation by multiplying
them by the pressure test function ¢ € Q and integrating, with Q = {g € £ (Q)}. Following standard algebraic procedures, we can obtain
the weak form of eqs (B1) as,

/¢kPkV~wdQ—/ w:(mmffé’k) o :f w-tdF—l—/w- (v-mx,jf,?) d§2+/ W - ¢pebidQ
Q Q Iy Q Q

+ / w.zck,zAvk,deJr/w-va¢kds2+fw.ka(aa)dsz
Q Q Q

z#k
11
fq¢kv.vkdsz+/qvk.v¢kdsz = ZZ/ qry (7 - 7) fil9)
Q Q P Pk z
quPA.ﬂL/q@k.j = —/qg,ff}f (wk¢,(v.v,(—w,¢jv.vj)dsz+/ gxi ;AP Q. (B2)
Q Q Q Q

The proof of the equivalence of the strong and weak formulation has been omitted here. The Galerkin formulation of the mechanical
problem in terms of both velocities and pressures leads to a mixed finite element approach. We introduce v/, P!, w" and ¢" as the finite
element discretizations of velocities, pressures and their associate weighting functions respectively; we also denote V* and Q" as the finite
dimensional subspaces of V and Q, where v/ € V', P! € " and (W", ¢") € V" x Q". These subspaces are characterized by being a partition
of the domain, and are formed by elements and nodes. We denote N\, and Np the sets of velocity and pressure nodes in the grid. The velocities
and pressures can be approximated in terms of shape functions and associated nodal values as,

Vi@ =vi(x) =Y N (X)V
aelNy
Pi(x)~ Pl (x,1) = Y Nj(x) P (B3)
aeNp
where N{ is the velocity shape function associated with node a, and v{ is the value of vZ at node a. The pressure P (with a € Np), is
interpolated using Np. We employ the extended Taylor—Hood element (Q2-(Q1+Q0)) with 9-velocity nodes and 5-pressure nodes to guarantee
stability of the solution. This velocity—pressure pair satisfies the LBB condition, ensures local mass conservation and incompressibility
constraint (Arndt 2013), and helps preventing shear locking (see Appendix C).
The mechanical problem in eqs (B2) is discretized in space using the interpolation and the Galerkin formulation introduced above. The
resulting matrix system assumes the following partitioned form for a general N-phase system,

_ ) T T T v, 7
Vv, vp, Vv PH .. viy?' pry' viy  PIY v !
: P
v, P, VV, VP, .. vi'' piy' viy PL 1 v
V2
P fVy_
vi, PI, VI PE .. VVy, VP, , VVy, VP, 2 v
=| fv
MV, 0 MV, 0 .. MVy, O MV, 0 N
_ M
PV PP —PV. —PP 0 0 0 0 0 Yy
Py Pep?
o 0 o 0o o pvW, pp -—pvi' _pp||[ "W
- - L PN _ _Pf["]\\;,l_

with the matrices defined as,

— | B'D;BQ — / crz | NINydQ
J (=

(I —ay)
Q Z;(l _w:)

v, = / NVT@.pkng—l—/ N ® (BT¢,(X,Z%2) dQ+/N5ka(aa)dsz+/ N7 . tdr
Q Q Q r

N

VV,

VP, = — / & GINpdQ — NIV NpdQ
Q

VI = / i NINLAQ
Q

- (1-w)
PIl = | ——— NI'v Q
¢ fg RTEPS AR
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MV, = / NL V)" Nyd 2 + / HNTG,dQ

M = ZZfNTr,TZ <f—f)dsz

z>k

PP = / NINpdQ
Q

PV] = / NP & i Gy dQ
Q

P/ = / NLx AP 49 + /Q NL@,,d2 (B4)
where,
TN 0 N2 0 .. N 0
N, =
O N 0 N .. 0 A
oo [vMoN N N LN N"]
Np_[ N2 Nf,]
3, N! AN2 0 .. BN 0
oN 0 N> .. 0 8N
O,N! 3Nl 9N 8N .. O,N° BN
[ NN aN2 aNZ .. 3N a\,Nf] (BS)
43 -2/3 0
D= | 23 43 0 (B6)
0 01

B2 Stress recovery

Since our formulation is fully visco-elasto-plastic, there is a need to obtain secondary variables such as stresses or strain rates from primary
variables solutions (i.e. velocity). However, because of the used element shape function, Ny (see Appendix B1), first spatial derivatives of
velocities do not possess inter-element continuity, resulting in a discontinuous representation of fluxes. On the other hand, the temporal
evolution of stresses/strain-rates need to be accurately tracked with time if elastic stresses are taken into account.

We combine proper flux correction techniques and moving set of particles in order to keep track of continuous stress fields. Details on
both, the flux correction scheme and how to compute stresses at the particles are given below.

B2.1 Global smoothing

Among the many existing flux correction schemes (local/global smoothing, superconvergent patch recovery, etc.), global smoothing (Hinton
& Campbell 1974) perhaps represents the most natural approach of FEM to obtain continuous flux descriptions all over the domain. The idea
behind this method is to recover a finite element smoothed flux solution which provides a best-fit in the least-squares sense over the domain.
In 2-D, a continuous approximation of smoothed velocity derivatives can be given as,
vi= YN vp =) Nl (B7)
a a
where v{* and vj” represent the unknown nodal vectors of smoothed derivatives. The minimization procedure results in the following system
of linear equations to be solved v{* and vi*,

M.v; =1, M-v) =T, (BS8)
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Figure C1. Contour plots for the three-body rotation problem. Advection (three revolutions) and Advection + Diffusion (one revolution) problems (by rows).

where M is the mass matrix, M = fQ NVT N,d2, and f, and f, are the RHS vectors involving the unsmoothed derivatives for each direction
(v" and v") as,

f, :/vaﬁdsz f, :/N{vﬁdsz. (B9)
Q Q ’

Both the mass matrix and the RHS vectors are evaluated using numerical integration. Recovering thus a finite element smoothed solution
requires the solution of two linear matrix systems (eqs B8) for the 2-D case. Despite being computationally expensive in some cases, Global
Smoothing represents a robust and easy-to-implement smoothing technique that enables us to evaluate velocity derivatives all over the domain
under the FEM framework.

B2.2 Computing stresses at particles
Deviatoric stresses are updated at the particles using eq. (48), which we recover here,

o= 2ui"e, + 4 E)
AP+ w00y = —g;_f]f. (ki V - Vi — 0,0,V - V;) + x. AP . (B10)
£

J?
transferred from the Eulerian grid to the particles using the interpolation scheme in (Oliveira et al. 2016). %2 is the rotated and advected

Effective viscosities, ,uiff and &/, elastic parameters, x; and x,f i deviatoric strain-rates é}{, and volumetric strain rates V - v, are
deviatoric stress tensor from the previous time step, and AP,E ; 18 the advected pressure difference (including surface tension effects). The
advection of both stresses and pressure differences is solved using the RK4 scheme, and the deviatoric stress rotation via the following
relations,

Ty = Tax cos’ 0 + Tyy sin® 6 + T,y Sin 20
T/ = Tax sin 6 + Tyy cos’ 6 — T,y SIN 20
T = % (Tyy — Tux) 8in 20 + 7, cO8 260 (B11)
we follow the convention that stress rotation angles & = wAt are positive for counter-clockwise rotations, x-axis is oriented from left to right,
and the y-axis from bottom to top. w is the vorticity computed as w = (& — aﬂ), and it is obtained through the procedure described in the

2\ 9y ax
previous section. Note that the rotation definition in (B11) is only valid for small angles of rotation.

APPENDIX C: VALIDATION OF THE NUMERICAL CODE

C1 Three-body rotation problem

The three body rotation transport problem is solved for pure advection and advection+diffusion. This benchmark tests the accuracy of both the
advection scheme and the particle-to-node-to-particle interpolation strategy. For further details on the initial settings and problem description,
the author is referred to Oliveira et al. (2016).

Fig. C1 shows the results obtained after 3 revolutions for the pure advection problem (first row), and 1 revolution for the advec-
tion+diffusion (second row). As expected, we exactly recover the shape of the three bodies in the first case, whereas in the second our method
shows stability and good agreement when compared with the reference solution. As shown in Oliveira et al. (2016), our interpolation scheme
is proven to handle sharp gradients and local heterogeneities effectively.
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C2 Stokes flow with analytical solution
We consider a 2-D incompressible problem in the square domain = [0, 1] x [0, 1] with analytical solution (Donea & Huerta 2003). The
problem consists of determining the velocity and pressure fields such that,
VP—uVv=>b inQ
V.v=0 inQ
v=0 onTl (C1)

where the viscosity 4 = 1 and the components of the body force b are prescribed as,

by = (12 — 24y)x* + (=24 + 48y) x* + (—48y + 72)” — 48)° + 12) x°
+(—2+24y —72)7 +48y° ) x + 1 — 4y +12)” — 8y’
by = (8 —48y +48y°) x” + (—12 + 72y — 72y%) x°
+ (4 — 24y + 48)” — 48)° +24y*) x — 12)” 4 24)° — 12)". (€2)

The exact solution for this problem reads,

v, = x2(1 —x) (2y -6y + 4y3)
v, = =y (1 —y)* (2x — 6x7 + 4x?)
P=x(-x). (C3)

In order to test our multiphase mechanical solver we adapt the problem above and rewrite the equations in (C1) for a two-phase problem

as,
V¢P1 —V'¢T1 = ¢b+C1V2AV]V2+PwV¢ in Q
Vdl=-9)P=V-(I-¢)t: =1 -@)b+cr1Avy; + P,V(1 —¢) inQ
Vipvi+V-(1—=¢)v, =0 in Q
Pz—Pl:¢wV'V1—(1—¢)(1—w)V'V2 in Q
vi=0 on I
v, =0 onI" (C4)

where @ = ¢ since we assume same viscosities for both phases. This benchmark consists on solving eqs (C4) for different values of ¢. First,
we impose uniform ¢ (uniform porosity,V¢ = V(1 — ¢) = 0). As for the second case, we impose a non-zero phase abundance gradient in a
similar two-phase problem (constant gradient in porosity). Results for these two cases are shown in Figs C2 and C3.

As expected, we recover the analytical solution with appropriate convergence rates for the first problem (a and b in Fig. C2 and blue line
in Fig. C3). However, the results for the second case differ from the predicted ones. The reason behind this difference resides in the interaction
term employed to approximate the shear stresses at the interface. In order to recover the analytical solution, the interaction term ¢; , Avey
should cancel out the stress jump at the interface t; - V¢, and similarly for the second phase. Whereas for the first problem this is fulfilled
since V¢ = 0, convergence of the numerical solution cannot be expected in the second case, since ¢; ,Avy , # 71 - V. Consequently, some
little error occur in both velocity C2-C and pressure fields C2-D. However, if we modify the body source in (C2) to take into account the term
T - V¢ in eqgs (C4) (here only the correction for the first phase is shown),

db, = ¢ (12— 24y)x" + ¢ (—24 + 48y)x” + ¢ (—48y + 72y" —48)" + 12) x* + ¢ (—2 4+ 24y — 72y° +48)°) x
+¢(1—4y+12y° —8y°) — 22—?(x2(2x —2)(4y® — 6y* +2y) + 2x(x — 1)*(4y° — 6y* +2y))
—%(xz(x — 1)2(12y% — 12y +2) — y2(y — 1)*(12x% — 12x + 2))

®b, = ¢ (8 —48y +48y°) x + ¢ (—12+ 72y — 72y%) x> + ¢ (4 — 24y + 48y — 48)° + 24)*) x — ¢ (12)° +24y° — 12)%)
- g—f(xz(x —1)2(12y% — 12y +2) — y*(y — 1)*(12x% — 12x + 2))

¢

_,9¢
ay

(=2 Q2y — 2)(4x> — 6x2 4+ 2x) — 2y(y — 1)*(4x> — 6x% + 2x)) (C5)

we recover both the analytical solution and the expected convergence rates for any possible distribution of phases (Figs C2a and b and C3(¥)).
In any case the results depicted in Figs C2 and C3 show oscillation-free results, which are in good agreement with the analytical and theoretical
predictions.
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Figure C2. Velocity (a and c) and pressure (b and d) results for uniform (a and b) and non-uniform (¢ and d) porosity problems. Top panels (a and b) refer
to absolute values obtained with 25 x 25 Q2-(Q1+Q0) elements for the uniform problem, where the discontinuous pressure field has been averaged over the
nodes. Lower panels (¢ and d) show absolute errors (relative to the analytical solution) of the non-uniform model with 25 x 25 Q2-(Q1+QO0) elements for both,
velocity module and pressure fields.
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Figure C3. Velocity (top panel) and pressure (lower panel) spatial convergence tests for uniform (blue) and non-uniform (red) porosity two-phase problems.
The errors are shown in L-2 norm relative to the analytical solution for different element sizes # = [1/10, 1/20, 1/30, 1/50, 1/100]. We get high-order in both
velocity and pressure fields for the uniform problem, whereas the desired convergency is not reached for the non-uniform case. (*) When the body source is
corrected with the interfacial stress term, the results overlap with the uniform porosity case and high-order is obtained.

C3 Rayleigh-Taylor instability

We run a two-layer isothermal compositional Rayleigh—Taylor instability in a box with aspect ratio A (Keken ez al. 1997). This benchmark
tests the accuracy of our advective scheme, the mechanical model, and the way viscosity jumps are handled by our code. The initial setup is a
box with depth H = 1, a buoyant layer of thickness 0.2, an aspect ratio of A = 0.9142, a density contrast of Ap = 1, different rheology ratios
Ha/ s = {1, 10, 100}, and an initial deflection of the interface a = 0.02 sin 7 /.

The results are given in Fig. C4, where the evolution of root-mean-square velocity and the relative entrainment of the light material as a
function of time are shown for the three viscosity contrasts. Velocity peaks compare well in value and timing with the methods compared in
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Figure C4. Evolutions of the entrainment of the light material (top) and evolution of the rms velocity for the three viscosity contrasts with time. In the middle,
results for the isoviscous case are shown at = 500, 1000 and 1500 s.
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Figure C5. 1-D fluid—solid compaction problem. Fluid (blue) and solid (red) velocities as a function of depth above an impermeable layer at y = 0. Boundary
condition at y = 2 is that both fluid and solid are stress free. As for the material properties, j1; = 10° Pas, us = 1012 Pas, £, = 10 Pas, pr=2800 kg m™3,
ps = 3300 kgm™3, kg, =5 x 107192 m?, g =10 m s~2 and ¢g = 0.1.

Keken et al. (1997). Snapshots of the evolution of the isoviscous Rayleigh—Taylor instability are also shown at times # = 500, 1000, 1500 s.
The reader is referred to Keken et al. (1997), for a comparison of these results.

C4 Two-phase compaction

We run the classic two-phase compaction problem, where the fluid (f) is allowed to flow across the solid (s) due to the density difference
between dynamic phases (McKenzie 1984). The system is assumed to be 1-D, with an impermeable bottom boundary, aty = 0, and a stress-free
upper boundary at y = &. In the case of 11, >, and constant uniform phase distribution (¢, = ¢ and ¢, = 1 — ¢), the compaction problem
has an analytical solution for # = 0, which reads

v =109 (1 —¢p) (1 — eiv/z?c)
Ve = —vogo (1 —e™/%)

kg, 1= oo
h =-"—— (o, — py
where v, Y™ (os —pr)g
k 0.5
8. = (4/3(1 —~ %)mﬂ) : (C6)
Ky

Fig. C5 depicts both fluid and solid velocities with depth for a given initial configuration. Our mechanical formulation exactly reproduces
the analytical solution.
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Figure C6. Comparison of the numerical solution (red) to the analytical (blue) solution of the loaded cylinder. The initial condition (dashed green line) is
shown for reference and the solution is represented with the finite element mesh, where the circles are the nodes.
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Figure C7. Unit square under simple shear at a rate of 5 s~!, and shear modulus G = 100 MPa.

C5 Locking and extended Taylor—-Hood elements

Finite elements behave poorly when nearly incompressible materials are modelled. It has been shown that under some circumstances finite
elements produce stiffer results than expected (Bower 2009). This problem is commonly referred as ‘locking’. Here, we show how our
mixed formulation combined with the extended Taylor—Hood hybrid element overcome the effects of locking. We consider a long hollow
cylinder with internal radius @ = 1 and external radius b = 4. As for material properties, we have Poisson’s coefficient v = 0.495 (nearly
incompressible) and shear modulus G = 1. The cylinder is loaded by an internal pressure p, = 1.

Fig. C6 demonstrates how our mixed formulation combined with the extended Taylor—Hood hybrid element prevents locking.

C6 Visco-elasto-plastic rheology

C6.1 Simple shear to large strain

We verify the correct implementation of the Jaumann stress derivative for large deformations. We compute a simple purely elastic shear stress
problem, and allow the strains to become quite large. Under a constant strain rate £, the stresses should evolve according to 7., = G sin (é7),
Tx = —Ty, = G (1 — cos(ét)). The results and the material properties are shown in Fig. C7. The harmonic behaviour corresponds to the
rigid body rotation for large deformations. Numerical results overlap with the analytical predictions, which demonstrate the effectiveness of
our Jaumann derivative implementation to compute stress advection and rotations.

C6.2 Visco-elasto-plastic evolution under pure shear

In an homogeneous 2-D incompressible pure shear problem with a constant strain rate, &, the deviatoric stresses should evolve according to
the equation 7;; = Z;Lé/ (1 — e G/ “). If plasticity is taking into account, the deviatoric stresses should be limited to the failure criteria 7, <
7,. The model dimensions and boundary conditions change in every time step in order to ensure a constant strain rate over time (Gerya &
Yuen 2007), and as for the material properties G = 10'° Pa, u = 10?2 Pa, and ,, = 100 MPa. We run two different scenarios with visco-elastic
and visco-elasto-plastic rheologies.

Fig. C8 shows exact agreement between our numerical results and the analytically predicted stress curve for both the visco-elastic (blue)
and visco-elasto-plastic (red) scenarios.
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Figure C8. Shear stress evolution in time for the pure shear deformation. Black lines correspond to analytical solutions whereas the circles represent the
numerical solutions for both the visco-elastic (blue) and the visco-elasto-plastic rheologies (red).
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Figure C9. Compaction pressure evolution in time under constant volumetric compaction. Black lines correspond to analytical solutions whereas the circles
represent the numerical solutions for both the viscoelastic (blue) and the viscoelastic rheologies (red).

C6.3 Visco-elasto-plastic evolution under volumetric expansion

Analogously, we run a 2-D two-phase volumetric compaction model, where we impose a constant volumetric strain rate v. In this case, the
compaction pressure should evolve according to the relation P, = (1 — ¢) v(1 — e X"/¥). Again, if plastic failure is taken into account, P,
should be limited by the failure criteria P. > P, (P, = 30 MPa for this example).

The numerical results in C9 for both, visco-elastic (blue) and visco-elasto-plastic (red) rheologies depict good agreement with the
analytical predictions.

C6.4 Visco-elasto-plastic shear bands

We test the ability of our code to initialize shear bands at characteristic angles when plastic shear failure occurs under pure shear extension
or compression. The homogenous 2-D model setup includes a circular weak inclusion (10 m radius) in the middle of our 2000 m wide and
1000 m high rectangular domain and a background strain rate of &3 = 1074 s=!. As for the material properties, the viscosity is i = 10?3
Pa s, elastic modulus G = 10'° Pa, cohesion C = 5 x 10° Pa, and the friction angle is set to ¢ = 30°. This set up should form shear bands
with an angle around 60° relative to the horizontal axis under extension, whereas angles around 30° should be expected under compression.
The shape and direction of these shear bands are dependent on the numerical resolution, effects of rheology, type of element, and iteration
strategy (Kaus 2010). We employ 90 x 45 Q2-(Q1+Q0) Taylor-Hood element mesh, Global Smoothing stress recovery technique and a
Picard iteration scheme to solve both the extensional and compression problems. Fig. C10 demonstrates the ability of our code to form the
shear bands with the characteristic angles under both extension and compression.

(a)

‘ H1
2
| ®)

Figure C10. Results of the pure shear extension (panel a) and compaction (panel b). Displayed are differential strain rates relative to the background strain
rate £z = 10714 s~! in logarithmic scale. Both results show good agreement with the expected characteristic angles.

G202 1890100 8z UO Jasn ajuem] Jo Ausioniun Aq 6£26027/SHE/1/Z1.2/o1eNB/woo dnodlwepeoe)/:sdjy wolj papeojumoq



